Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.).

Theor Appl Genet

Laboratory for Research and Utilization of Qinghai-Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.

Published: March 2025

qFT.A02-1, a major quantitative trait locus controlling flowering time in Brassica napus, was mapped to a 104.8-kb region on chromosome A02, and BnaA02G0156900ZS is the candidate gene in response for flowering time. Flowering time is a key agronomic trait that determines the adaptability of crops to the environment and thus affects yields. The mechanism underlying flowering time is still far from clear in Brassica napus. In this study, a recombinant inbred line population composed of 215 lines was constructed and 35 flowering time QTLs were identified. One major QTL, qFT.A02-1 (explaining 16.40-17.80% of phenotypic variation), was detected in two environments, which was confirmed by QTL-seq. A residual heterozygous line containing qFT.A02-1 for flowering time was further constructed, and qFT.A02-1 was subsequently fine-mapped to a 104.8-kb interval, wherein a total of 11 genes were predicted. Candidate gene functional annotation implied that BnaA02G0156900ZS, a homologous gene of FLOWERING LOCUS T in B. napus, was likely the candidate gene for qFT.A02-1. HiFi sequencing of the two parents was subsequently conducted, and a 1,079-bp insertion in the promoter of BnaA02. FT was confirmed. The allelic variation analysis in a diversity of accessions identified another 6 SNPs existing in the non-coding region of BnaA02. FT and the 1,079-bp insertion in promoter region are closely associated with the flowering time in B. napus. Haplotype analysis indicated that the flowering time of Hap02 is significantly earlier than Hap01 and Hap04, and Hap05 is significantly earlier than Hap04. Yield-related trait analysis revealed that there are no significant differences in yield-related traits between the two near-isogenic lines based on the target locus. These results may advance our understanding of the mechanism underlying flowering time in B. napus.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00122-025-04845-8DOI Listing

Publication Analysis

Top Keywords

flowering time
40
brassica napus
12
candidate gene
12
flowering
11
time
10
mechanism underlying
8
underlying flowering
8
1079-bp insertion
8
insertion promoter
8
time napus
8

Similar Publications

A J-Domain Protein J3 Antagonizes ABI5-BINDING PROTEIN2 to Regulate CONSTANS Stability and Flowering Time.

Plant Cell Environ

March 2025

Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China.

CONSTANS (CO) plays a vital role in activating the expression of the florigen FT during photoperiod-dependent flowering. The diurnal oscillation of CO protein abundance is strictly controlled by daylength and the circadian clock. We showed previously that ABI5-BINDING PROTEIN2 (AFP2) represses CO expression to delay flowering.

View Article and Find Full Text PDF

Seasonal and Diurnal Transcriptome Atlas in Natural Environment Reveals Flowering Time Regulatory Network in Alfalfa.

Plant Cell Environ

March 2025

State Key Laboratory of Forage Breeding-by-Design and Utilization, Institute of Botany, Chinese Academy of Sciences, Beijing, China.

Alfalfa (Medicago sativa L.) is a globally cultivated perennial forage legume. Flowering time, an important agronomic trait of alfalfa, is pivotal for farmers to determine the optimal harvest stage, thereby maximizing economic benefits.

View Article and Find Full Text PDF

Plant pollination by insects represents one of the most transformative and iconic ecological relationships in the natural world. Despite tens of thousands of papers, as well as numerous books, on pollination biology published over the past 200 years, most studies focused on the fossil record of pollinating insects have only been published in the last few decades, and this field is still undergoing major developments. Current palaeontological evidence indicates that pollinating insects were diverse and participated in the reproduction of different gymnosperm lineages long before their association with flowering plants (angiosperms).

View Article and Find Full Text PDF

Genetic dissection of flowering time and fine mapping of qFT.A02-1 in rapeseed (Brassica napus L.).

Theor Appl Genet

March 2025

Laboratory for Research and Utilization of Qinghai-Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.

qFT.A02-1, a major quantitative trait locus controlling flowering time in Brassica napus, was mapped to a 104.8-kb region on chromosome A02, and BnaA02G0156900ZS is the candidate gene in response for flowering time.

View Article and Find Full Text PDF

Hemp (Cannabis sativa L.) is a versatile crop with substantial potential for creating productive, sustainable, and resilient agricultural systems. However, in contrast to other crops such as cereals, hemp is highly heterozygous, resulting in both challenges and opportunities for agriculture, breeding, and research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!