Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Melatonin, also known as the pineal hormone, is secreted by the pineal gland and primarily regulates circadian rhythms. Additionally, it possesses immunomodulatory properties and anticancer effects. However, its specific mechanism in hepatocellular carcinoma (HCC) remains unclear, particularly regarding its effect on HCC-mediated immune escape through PD-L1 expression.In this study, in vitro experiments were conducted using Huh7 and HepG2 HCC cells. Melatonin treatment was applied to both cell types to observe changes in malignant phenotypes. Additionally, melatonin-pretreated Huh7 or HepG2 cells were co-cultured with T cells to simulate the tumor microenvironment. The results showed that melatonin inhibited cancer cell proliferation, migration, and invasion, as well as reduced PD-L1 expression in cancer cells, exhibiting similar anti-cancer effects in the co-culture system. In vivo experiments involved establishing ascitic HCC mouse models using H22 cells, followed by subcutaneous tumor models in Balb/c nude and Balb/c wild-type mice. Melatonin inhibited tumor growth and suppressed PD-L1 expression in cancer tissues in both subcutaneous tumor models, and it increased T lymphocyte activity in the spleen of Balb/c wild-type mice. Overall, the in vitro and in vivo experiments demonstrated that melatonin has dual anti-cancer effects in HCC: direct intrinsic anti-cancer activity and enhancement of anti-tumor immunity by reducing PD-L1 expression thereby inhibiting cancer immune escape. Furthermore, a decrease in the expression of the upstream molecule HIF-1α of PD-L1 and an increase in the expression levels of JNK, P38, and their phosphorylated forms were detected. Thus, the mechanism by which melatonin reduces PD-L1 may involve the downregulation of HIF-1α expression or the activation of the MAPK-JNK and MAPK-P38 pathways. This provides new insights and strategies for HCC treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-93486-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!