This study investigates the utilization of three regression models, i.e., Kernel Ridge Regression (KRR), nu-Support Vector Regression ([Formula: see text]-SVR), and Polynomial Regression (PR) for the purpose of forecasting the concentration (C) of a drug within a specified environment, relying on the coordinates (x and y). The analyses were carried out for separation of drug from a solution by adsorption process where the concentration of drug was obtained in the solution and the adsorbent via computational fluid dynamics (CFD), and the results of concentration distribution were used or machine learning modeling. The model considered mass transfer and fluid flow equations to determine concentration distribution of solute in the system. The hyperparameter optimization was carried out using the Fruit-Fly Optimization Algorithm (FFOA), a nature-inspired optimization technique. Our results demonstrate the performance of each model in terms of key regression metrics. KRR achieved an R score of 0.84851, with a Root Mean Square Error (RMSE) of 1.0384E-01 and a Mean Absolute Error (MAE) of 7.27762E-02. [Formula: see text]-SVR exhibited exceptional accuracy with an R of 0.98593, accompanied by an RMSE of 3.5616E-02 and an MAE of 1.36749E-02. PR, a traditional regression method, attained an R score of 0.94077, an RMSE of 7.2042E-02, and an MAE of 4.81533E-02.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-93596-zDOI Listing

Publication Analysis

Top Keywords

machine learning
8
[formula text]-svr
8
concentration drug
8
drug solution
8
concentration distribution
8
regression
6
development hybrid
4
hybrid robust
4
robust model
4
model based
4

Similar Publications

Background: Processing data from electronic health records (EHRs) to build research-grade databases is a lengthy and expensive process. Modern arthroplasty practice commonly uses multiple sites of care, including clinics and ambulatory care centers. However, most private data systems prevent obtaining usable insights for clinical practice.

View Article and Find Full Text PDF

Background: Amyotrophic lateral sclerosis (ALS) leads to rapid physiological and functional decline before causing untimely death. Current best-practice approaches to interdisciplinary care are unable to provide adequate monitoring of patients' health. Passive in-home sensor systems enable 24×7 health monitoring.

View Article and Find Full Text PDF

AI-Driven Discovery of Highly Specific and Efficacious hCES2A Inhibitors for Ameliorating Irinotecan-Triggered Gut Toxicity.

J Med Chem

March 2025

State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine; Shanghai Frontiers Science Center of TCM Chemical Biology; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.

The anticancer agent irinotecan often induces severe delayed-onset diarrhea, inhibiting human carboxylesterase 2A (hCES2A) can significantly alleviate irinotecan-triggered gut toxicity (ITGT). This work presents an efficient workflow for design and developing novel efficacious hCES2A inhibitors. A well-training machine learning model identified as a lead compound, while compound was developed as a novel time-dependent hCES2A inhibitor (IC = 0.

View Article and Find Full Text PDF

Within a recent decade, graph neural network (GNN) has emerged as a powerful neural architecture for various graph-structured data modelling and task-driven representation learning problems. Recent studies have highlighted the remarkable capabilities of GNNs in handling complex graph representation learning tasks, achieving state-of-the-art results in node/graph classification, regression, and generation. However, most traditional GNN-based architectures like GCN and GraphSAGE still faced several challenges related to the capability of preserving the multi-scaled topological structures.

View Article and Find Full Text PDF

Background: Plant-based milk alternatives (PBMA) are increasingly popular due to rising lactose intolerance and environmental concerns over traditional dairy products. However, limited efforts have been made to develop rapid authentication methods to verify their biological origin.

Objective: In this study, we developed a rapid, on-site analytical method for the authentication and identification of PBMA made by six different plant species utilizing a portable Raman spectrometer coupled with machine learning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!