Mono-ADP-ribosyl transferase (mART) proteins are secreted virulence factors produced by several human pathogens, the founding member being diphtheria toxin (DT). Pseudomonas aeruginosa can also secrete a mART toxin, known as exotoxin A (PE), but with an organization of its three functional domains (receptor, translocation, and enzymatic elements) that is opposite to DT. Two additional PE-like toxins (PLTs) have been identified from Vibrio cholerae and Aeromonas hydrophila, suggesting more PLT family members may exist. Database mining discovered six additional putative homologues, considerably extending this group of PLTs across a wide range of bacterial species. Here, we examine sequence and structural information for these new family members with respect to previously identified PLTs. The X-ray crystal structures of four new homologues show the conservation of critical features responsible for structure and function. This study shows the potential of these newly described toxins for the development of novel drug delivery platforms. Additionally, genomic analysis suggests horizontal gene transfer to account for the wide distribution of PLTs across a range of eubacteria species, highlighting the need to monitor emerging pathogens and their virulence factors.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s42003-025-07845-yDOI Listing

Publication Analysis

Top Keywords

virulence factors
8
family members
8
discovery mono-adp
4
mono-adp ribosylating
4
ribosylating toxins
4
toxins high
4
high structural
4
structural homology
4
homology pseudomonas
4
pseudomonas exotoxin
4

Similar Publications

Combatting antibiotic resistance in Gardnerella vaginalis: A comparative in silico investigation for drug target identification.

PLoS One

March 2025

Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.

Gardnerella vaginalis is the most frequently identified bacterium in approximately 95% of bacterial vaginosis (BV) cases. This species often exhibits resistance to multiple antibiotics, posing challenges for treatment. Therefore, there is an urgent need to develop and explore alternative therapeutic strategies for managing bacterial vaginosis.

View Article and Find Full Text PDF

Reptiles may act as reservoirs or spreaders of potential pathogenic microorganisms including Candida yeasts. While the epidemiology of yeast species has been thoroughly studied, the virulence profile of isolated species is not well investigated. Therefore, this study aimed to assess the haemolytic, phospholipase, lipase activities and biofilm formation of yeasts isolated from the cloacal swabs of venomous snakes from Marrakech, Morocco (Group I, n = 40) and from non-venomous snakes from Cocullo, Italy (Group II, n = 32).

View Article and Find Full Text PDF

Novel treatment options are needed for the gastric pathogen due to its increasing antibiotic resistance. The vitamin K analogue menadione has been extensively studied due to interest in its anti-bacterial and anti-cancer properties. Here, we investigated the effects of menadione on growth, viability, antibiotic resistance, motility and gene expression using clinical isolates.

View Article and Find Full Text PDF

Introduction: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-hvKP) is a highly pathogenic, drug-resistant, and transmissible "superbug" that causes infections in hospitals and communities. Because of the lack of effective antimicrobial treatment options, morbidity and mortality from CR-hvKP infections have increased dramatically, and outbreaks and the rapid spread of CR-hvKP in hospitals have become a major global public health challenge.

Methods: The mechanisms of molecular evolution in CR-hvKP include the acquisition of a hypervirulent plasmid encoding a virulence gene by carbapenemase-producing K pneumoniae, the horizontal transfer of plasmids carrying carbapenem resistance genes to hvKP, and the acquisition of fusion plasmids carrying both carbapenem resistance genes and hypervirulent genes by classic K pneumoniae.

View Article and Find Full Text PDF

Protein N-glycosylation influences protein folding, stability, and trafficking, and has prominent functions in cell-cell adhesion and recognition. For the parasite Toxoplasma gondii, N-glycosylation of proteins is crucial for initial adhesion to host cells, parasite motility, and consequently, its ability to invade host cells. However, the glycoproteome of T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!