Oil-based drilling cutting residues (OBDCRs) are among the primary solid wastes generated during shale gas exploration and development. Utilizing existing equipment to transform OBDCRs into ceramsites appears to be a feasible and resource-efficient approach. In this study, building ceramsites were prepared with OBDCRs incorporating with fly ash (a byproduct of coal combustion) as raw materials. The aim was to comprehensively and systematically investigate physicochemical properties and characteristics of heavy metals (HMs) in the ceramsites. Research shows that building ceramsites can indeed be prepared using OBDCRs, which exhibit good comprehensive properties and strong resistance to acid/ alkali. The main HMs found in ceramsite are barium (Ba), chromium (Cr), nickel (Ni), lead (Pb), arsenic (As), cadmium (Cd), and mercury (Hg). During the calcination process, these OBDCRs, along with fly ash and foaming agent, underwent mutual melting, resulting in the formation of glass, anorthite and mullite. These newly formed phases effectively encapsulated HMs, resulting in varying degrees of enrichment of HMs such as As, Ba, Pb, Cr, and Ni, except for Cd and Hg. However, the leaching toxicity of these HMs in the ceramsite was significantly lower compared to that of the original OBDCRs. Further analysis revealed a significant increase in the proportion of Fe-Mn Oxides and Organic Matter in HMs such as Cr, Ni, As, Cd, and Pb, while the proportion of Exchangeable and Carbonates forms decreased markedly. This trend clearly demonstrated that the calcination process modified the physical and chemical properties of the ceramsite, and effectively stabilized HMs, i.e., migrated from an active state to a more stable form.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-93394-7 | DOI Listing |
Sci Rep
March 2025
School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
Oil-based drilling cutting residues (OBDCRs) are among the primary solid wastes generated during shale gas exploration and development. Utilizing existing equipment to transform OBDCRs into ceramsites appears to be a feasible and resource-efficient approach. In this study, building ceramsites were prepared with OBDCRs incorporating with fly ash (a byproduct of coal combustion) as raw materials.
View Article and Find Full Text PDFHarmless treatment and reuse of municipal solid waste incinerator fly ash are challenging. Two reuse technologies of converting incinerator fly ash to ceramsites via rotary kiln sintering and non-sintering have been demonstrated in China. Field monitoring results reveal that the destruction efficiency of PCDD/Fs are both higher than 99% in two processes.
View Article and Find Full Text PDFEnviron Geochem Health
November 2020
National Engineering Laboratory for Reducing Emissions from Coal Combustion, School of Energy and Power Engineering, Shandong University, 17923 Jingshi Road, Jinan, 250061, China.
Municipal solid waste incineration (MSWI) for power generation can reuse waste effectively, but it generates a large amount of fly ash enriched with heavy metals. If this fly ash cannot be treated properly, it can cause ecological damage and human health risk. According to the production of ceramsites from MSWI fly ash, an evaluation methodology is established, in which the influence of heavy metal stability on the environment is considered for the first time, and the health risks of heavy metals via different exposure pathways are distinguished.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!