Plasmids play a major role in the spread of antibiotic resistance genes in bacteria. Plasmid copy number (PCN) is often tightly regulated. In plasmids of the ColE1-type, this regulation happens by a negative feedback mechanism using an antisense RNA. Here, we employed a sequencing-based method for determining PCN to demonstrate that copy number of different ColE1-family plasmids harboring antibiotic resistance genes increases during antibiotic treatment. Further, we show that deletion of the gene pcnB reduces the copy number of ColE1-family plasmids in E. coli MG1655, which in turn results in a reduced resistance to antimicrobials of the classes aminoglycosides, β-lactams and tetracyclines. In the absence of antibiotic selection, the deletion of pcnB also decreased the number of ColE1-type plasmids in a bacterial population. Hence, PcnB, which polyadenylates RNA, marking it for decay, represents a potential drug and helper-drug target that could be used to reduce PCN to re-sensitize bacteria with multi-copy-number resistance-plasmids to treatment with different antimicrobials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41598-025-92308-x | DOI Listing |
Ann Vasc Surg
April 2025
Department of Cardiology, Dongying People's Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, China. Electronic address:
Background: Venous thromboembolism (VTE), including pulmonary embolism (PE) and deep vein thrombosis (DVT), is the third most common cardiovascular disease. A low amount of mitochondrial DNA copy number (mtDNA-CN) reflects mitochondrial dysfunctions and has been associations with arterial cardiovascular diseases. However, the role of mtDNA-CN in venous cardiovascular disease was unclear.
View Article and Find Full Text PDFInt Immunopharmacol
March 2025
School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China. Electronic address:
Atherosclerosis is a chronic inflammatory disease in which mitochondrial DNA (mtDNA) has emerged as a key contributor to its pathogenesis. We synthesized evidence from experimental and clinical studies showing that mtDNA damage, release, and mutation profoundly affect endothelial cells, macrophages, and vascular smooth muscle cells, thereby driving plaque initiation and progression. By activating immune signaling pathways-including cGAS-STING, NLRP3 inflammasome, and TLR9-mtDNA amplifies inflammation and oxidative stress, exacerbating atherosclerotic lesion development.
View Article and Find Full Text PDFThe development of targeted therapy for patients with multiple myeloma (MM) is hampered by the low frequency of actionable genetic abnormalities. Gain or amplification of chromosome 1q (1q+) is the most frequent arm-level copy number gain in patients with MM and is associated with higher risk of progression and death despite recent therapeutic advances. Thus, developing targeted therapy for MM patients with 1q+ stands to benefit a large portion of patients in need of more effective management.
View Article and Find Full Text PDFSci Adv
March 2025
Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
Glioblastoma (GBM) is the most prevalent malignant brain tumor with poor prognosis. Although chromatin intratumoral heterogeneity is a characteristic feature of GBM, most current studies are conducted at a single tumor site. To investigate the GBM-specific 3D genome organization and its heterogeneity, we conducted Hi-C experiments in 21 GBM samples from nine patients, along with three normal brain samples.
View Article and Find Full Text PDFElife
March 2025
Department of Biology, Indian Institute of Science Education and Research, Pune, India.
Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, , 2021) shown that, in , mutations at the locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing and spanning hundreds of kilobases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!