A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Muscle transcriptome profiles in elite male ultra-endurance athletes acclimated to a high-carbohydrate versus low-carbohydrate diet. | LitMetric

Low-carbohydrate, high-fat diets enhance lipid metabolism and decrease reliance on glucose oxidation in athletes, but the associated gene expression patterns remain unclear. The purpose of this study was to determine whether coordinated molecular pathways in skeletal muscle may be revealed by differential expression of genes driven by dietary profile, exercise, and/or their interaction. We investigated the skeletal muscle transcriptome in elite ultra-endurance athletes habitually (~ 20 months) consuming a high-carbohydrate, low-fat (HC, n = 10, 33 ± 6y, VO2max = 63.4 ± 6.2 mL O2•kg-1•min-1) or low-carbohydrate, high-fat (LC, n = 10, 34 ± 7y, VO2max = 64.7 ± 3.7 mL O2•kg-1•min-1) diet. Skeletal muscle gene expression was measured at baseline (BL), immediately-post (H0), and 2 h (H2) after 3 h submaximal treadmill running. Diet induced a coordinated but divergent expression pattern at BL where LC had higher expression of genes associated with lipid metabolism. Exercise resulted in a dynamic but uniform gene response, with no major differences between groups (H0). At H2, gene expression patterns were associated with differential pathway activity, including inflammation/immunity, suggesting a diet-specific influence on early muscle recovery. These results indicate that low-carbohydrate, high-fat diets lead to differences in resting and exercise-induced skeletal muscle gene expression patterns, underlying our previous findings of differential fuel utilization in elite ultra-endurance athletes.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-88963-9DOI Listing

Publication Analysis

Top Keywords

gene expression
16
skeletal muscle
16
ultra-endurance athletes
12
low-carbohydrate high-fat
12
expression patterns
12
muscle transcriptome
8
high-fat diets
8
lipid metabolism
8
expression genes
8
elite ultra-endurance
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!