Hemp (Cannabis sativa L.) is a versatile crop with substantial potential for creating productive, sustainable, and resilient agricultural systems. However, in contrast to other crops such as cereals, hemp is highly heterozygous, resulting in both challenges and opportunities for agriculture, breeding, and research. Here, we utilise the heterozygosity of hemp to explore the genetic basis of phenotypic variability in a population generated from a single self-pollinated hemp plant. The S1 population shows extensive variability in plant growth, development, and reproductive patterns. Using reduced representation sequencing, selection of alleles heterozygous in the parent plant, and a model originally developed for genome-wide association studies (GWAS), we were able to identify statistically significant single nucleotide variants (SNVs) and haplotypes associated with phenotypic traits of interest, such as flowering time or biomass yield. This new approach, which we term genome-specific association study (GSAS), enables the mapping of traits in a single generation without the need for a large number of diverse cultivars or samples. GSAS might be applicable to other highly heterozygous vegetable and fruit crops, informing the breeding of new cultivars with enhanced uniformity and improved performance in traits relevant to various applications.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41598-025-92168-5DOI Listing

Publication Analysis

Top Keywords

genome-specific association
8
association study
8
study gsas
8
hemp cannabis
8
cannabis sativa
8
highly heterozygous
8
hemp
5
gsas exploration
4
exploration variability
4
variability hemp
4

Similar Publications

Hemp (Cannabis sativa L.) is a versatile crop with substantial potential for creating productive, sustainable, and resilient agricultural systems. However, in contrast to other crops such as cereals, hemp is highly heterozygous, resulting in both challenges and opportunities for agriculture, breeding, and research.

View Article and Find Full Text PDF

TurboCas: A method for locus-specific labeling of genomic regions and isolating their associated protein interactome.

Mol Cell

December 2024

Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA; Robert H. Lurie NCI Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, 303 E. Superior St., Chicago, IL 60611, USA. Electronic address:

Regulation of gene expression during development and stress response requires the concerted action of transcription factors and chromatin-binding proteins. Because this process is cell-type specific and varies with cellular conditions, mapping of chromatin factors at individual regulatory loci is crucial for understanding cis-regulatory control. Previous methods only characterize static protein binding.

View Article and Find Full Text PDF
Article Synopsis
  • * The study used a modified cell line containing the m.15059G>A mutation to assess the impacts of eliminating this mutation on mitochondrial function.
  • * Results showed that removing the m.15059G>A mutation enhanced mitochondrial membrane potential and efficiency, reduced harmful byproducts, and did not alter the antioxidant system, indicating the mutation's negative role in mitochondrial health.
View Article and Find Full Text PDF

GWAS for the identification of introgressed candidate genes of with increased branching numbers in backcross lines of the allohexaploid .

Front Plant Sci

June 2024

Plant Protection Unit, Indian Council of Agricultural Research (ICAR)-Directorate of Rapeseed Mustard Research, Sewar, Bharatpur, India.

Plant architecture is a crucial determinant of crop yield. The number of primary (PB) and secondary branches (SB) is particularly significant in shaping the architecture of Indian mustard. In this study, we analyzed a panel of 86 backcross introgression lines (BCILs) derived from the first stable allohexaploid Brassicas with 170 genome-specific SSR markers to identify associated markers with higher PB and SB through association mapping.

View Article and Find Full Text PDF

Terrestrial hot springs harbor diverse microbial communities whose compositions are shaped by the wide-ranging physico-chemistries of individual springs. The effect of enormous physico-chemical differences on bacterial and archaeal distributions and population structures is little understood. We therefore analysed the prevalence and relative abundance of bacteria and archaea in the sediments (n = 76) of hot spring features, in the Taupō Volcanic Zone (New Zealand), spanning large differences in major anion water chemistry, pH (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!