Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl--glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (T) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices. This morphology yields a 1.5 order of magnitude higher T- and volume fraction-normalized ionic conductivity and a morphology factor f > 0.8 compared to less ordered BCPs with f < 0.05 and f = 2/3 for ideal lamellae. These results highlight the critical role of helical structure in optimizing ion transport, offering a design strategy for high-performance solid electrolytes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-57784-9 | DOI Listing |
Nat Commun
March 2025
Department of Materials Science and Engineering, Materials Research Laboratory, University of Illinois Urbana-Champaign, Urbana, IL, USA.
Helical-helical polypeptide polymerized ionic liquid block copolymers (PPIL BCPs) are synthesized to investigate the role of helical structure on self-assembly and ionic conductivity. PPIL BCPs, consisting of a cationic polypeptide (PTPLG) with bis(trifluoromethane sulfonimide) (TFSI) counterion and varying lengths connected to a length-fixed neutral poly-(γ-benzyl--glutamate) (PBLG) block, exhibit stable helical conformations with minimal glass transition (T) variation. Here, we show that increasing PIL composition leads to a transition from poorly ordered to highly ordered lamellar (LAM) structures with the highest PIL content BCP forming a bilayer LAM structure with close-packed helices.
View Article and Find Full Text PDFBiochemistry
February 2004
Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-458, Cambridge, Massachusetts 02139-4301, USA.
To understand the connection between the conformation of a protein molecule and the oxidation of its methionine residues, we measured the rates of oxidation of methionine residues by H(2)O(2) in granulocyte colony-stimulating factor (G-CSF) as a function of pH and also studied the structural properties of this protein as a function of pH via molecular dynamics simulations. We found that each of the four methionine groups in G-CSF have significant and different rates of oxidation as a function of pH. Moreover, Met(1), in the unstructured N-terminal region, has a rate of oxidation as low as half that of free methionine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!