Polymersomes with surface-integrated nanoparticles, in which a smaller sphere is attached to a larger capsule, are typically formed through complex processes like membrane deformation, polymerization, or membrane functionalization. This complexity restricts facile application of this unusual topology, for example in drug delivery or nanomotor science. Our study introduces a robust method for crafting polymersomes with surface-integrated nanoparticles using a hierarchical phase separation approach. By co-assembling block copolymers with aromatic aggregation-induced emission (AIE) moieties as side chains and photothermal-responsive guest molecules (PTM), spontaneous sequential phase separation processes occur that lead to their controlled formation. Polymer-rich liquid droplets form first, followed by internal phase separation of the guest molecules, which determines the formation of asymmetric morphology. This mechanism is elucidated in detail using liquid-phase transmission and cryogenic transmission electron microscopy (LP-TEM and cryo-TEM) and corroborated by theoretical simulations of the interaction forces between the block copolymers and guest molecules. Finally, the application potential of polymersomes with surface-integrated nanoparticles as nanomotors is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41467-025-57711-yDOI Listing

Publication Analysis

Top Keywords

polymersomes surface-integrated
16
surface-integrated nanoparticles
16
phase separation
16
guest molecules
12
nanoparticles hierarchical
8
hierarchical phase
8
block copolymers
8
designing polymersomes
4
surface-integrated
4
nanoparticles
4

Similar Publications

Designing polymersomes with surface-integrated nanoparticles through hierarchical phase separation.

Nat Commun

March 2025

Bio-Organic Chemistry, Department of Chemical Engineering and Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, Eindhoven, The Netherlands.

Polymersomes with surface-integrated nanoparticles, in which a smaller sphere is attached to a larger capsule, are typically formed through complex processes like membrane deformation, polymerization, or membrane functionalization. This complexity restricts facile application of this unusual topology, for example in drug delivery or nanomotor science. Our study introduces a robust method for crafting polymersomes with surface-integrated nanoparticles using a hierarchical phase separation approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!