The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li storage mechanisms in these materials. Herein, by visualizing Li intercalated into representative NbWO, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect. Furthermore, in situ electron microscopy further reveals a directional, [010]-preferred Li transport mechanism in NbWO crystals being the "bottleneck" toward fast charging that deprives the entry of any desolvated Li through the prevailing non-(010) surfaces. Hence, we propose a machine learning-assisted interface engineering strategy to swiftly collect desolvated Li and relocate them to (010) surfaces for their fast intercalation. As a result, a capacity of ≈ 116 mAh g (68.5% of the theoretical capacity) at 80 C (45 s) is achieved when coupled with a Li negative electrode.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41467-025-57576-1 | DOI Listing |
Phys Chem Chem Phys
March 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Ion encapsulation by solvent molecules significantly impacts ion transport and the adsorption mechanism in energy storage devices. The aim of this investigation is to analyse the adsorption mechanisms associated with the solvation shell of lithium ions near the electrode/electrolyte interface during the charging process. Simulations using molecular dynamics (MD) are conducted for LiPF salt in PC solvent confined in between two flat carbon electrodes.
View Article and Find Full Text PDFNat Commun
March 2025
State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China.
The recycling of spent lithium-ion batteries can effectively mitigate the environmental and resource challenges arising from the escalating generation of battery waste and the soaring demand for battery metals. The existing mixing-then-separating recycling process is confronted with high entropy-increasing procedures, including crushing and leaching, which result in irreversible entropy production due to the decrease in material orderliness or heavy chemical consumption, thereby hindering its thermodynamic efficiency and economic viability of the entire recycling process. Herein, we propose a galvanic leaching strategy that leverages the self-assembly of LiNiCoMnO particles with their inherent aluminium foil current collectors in spent lithium-ion batteries, creating a primary cell system capable of recovering battery metals without pre-crushing or additional reductants.
View Article and Find Full Text PDFNat Commun
March 2025
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China.
The discovery of Nb-W-O materials years ago marks the milestone of charging a lithium-ion battery in minutes. Nevertheless, for many applications, charging lithium-ion battery within one minute is urgently demanded, the bottleneck of which largely lies in the lack of fundamental understanding of Li storage mechanisms in these materials. Herein, by visualizing Li intercalated into representative NbWO, we find that the fast-charging nature of such material originates from an interesting rate-dependent lattice relaxation process associated with the Jahn-Teller effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Lithium-rich manganese oxide (LRMO) is a promising high-energy-density material for high-voltage lithium-ion batteries, but its performance is hindered by interfacial side reactions, transition metal dissolution, and oxygen release. To address these issues, we propose a high-voltage electrolyte strategy that utilizes cosolvent and additive synergy to create stable dual interphases at both the cathode and anode. Specifically, lithium difluoro(oxalato)borate (LiDFOB) additive sacrificially decomposes to form a uniform yet stable cathode-electrolyte interphase (CEI) layer, while cosolvent of bis(2,2,2-trifluoroethyl) carbonate (BTFEC) effectively adjusts the solvation structure and synergistically stabilizes the solid-electrolyte interphase (SEI) on the anode, ultimately achieving ultrahigh cycle stability and fast-charging feasibility.
View Article and Find Full Text PDFAdv Mater
March 2025
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro Yuseong-gu, Daejeon, 34141, Republic of Korea.
The grain sizes of solid electrolyte interphase (SEI) and solvation structure of electrolytes can affect Li ion transport across SEI and control the desolvation kinetics of solvated Li ions during fast-charging of Li-ion batteries (LIBs). However, the impact of the geometric structure of SEI grains on the fast charging capability of LIBs is rarely examined. Here, the correlation between the SEI grain size and fast charging characteristics of cells is explored, and the desolvation kinetics is controlled by replacing the strongly binding ethylene carbonate (EC) solvent with a weakly binding nitrile-based solvent under fast charging conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!