Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Combining high-voltage cobalt-free LiNi0.5Mn1.5O4 (LNMO) with fluorine-free water-soluble binders holds the promise of achieving more sustainable and environment-friendly lithium-ion batteries (LIBs). However, achieving high mass loading electrodes with lithium transition metal oxides as the active material remains a challenge. Herein, 2-hydroxyethyl cellulose (HEC) is proposed as suitable binding agent, crosslinked via citric acid with guar gum (GG). The incorporation of HEC is pivotal for realizing a homogeneous dispersion of the electrode components, which is essential for the mechanical properties. Hence, the advantageous combination of co-crosslinked HEC and GG allows for the simultaneous optimization of electrochemical and mechanical properties, enabling the preparation of well performing high mass loading LNMO electrodes with about 15 mg cm-2, providing a capacity retention as good as reference electrodes employing polyvinylidene difluoride as binder. Coupling these electrodes with graphite-based negative electrodes enables lithium-ion cells with an areal capacity of ~ 2.2 mAh cm-2 and a capacity retention of 82% after 200 cycles, rendering this system promising for the realization of water-processed, F-free, high-voltage cathodes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202500079 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!