A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Simultaneous Electrochemical Upgrading of Biomass and CO₂ Utilization Using Fe/Ni-Derived Carbon Nanotubes Derived from CO₂. | LitMetric

Fossil fuel consumption has caused petroleum shortages and increased carbon emissions, thus, utilizing renewable resources in biorefineries for biomass-derived chemical synthesis is promising. Among them, 2,5-furandicarboxylic acid (FDCA) is a key alternative to terephthalic acid (PTA) for sustainable polyester production. In this work, we demonstrate an efficient approach for the simultaneous production of FDCA while utilizing CO₂ via an electrochemical approach. Complete electrooxidation of hydroxymethylfurfural (HMF) at the anode yields FDCA, while CO₂ reduction at the cathode produces valuable compounds such as carbon monoxide (CO). This concurrent HMF electrooxidation and CO₂electroreduction strategy enables high-value chemical production at mild conditions. In addition, we developed efficient single catalysts, FeNi metals supported on CO₂-derived multi-walled carbon nanotubes deposited on nickel foam (FeNiCNTs/NF) as both the anode and the cathode for HMF oxidation and CO2 reduction, respectively. Remarkably, faradaic efficiencies reached 99.60% for FDCA (FEFDCA) at the anode and 96.25% for CO (FECO) at the cathode. This study highlights the effective use of synthesized non-noble metals supported on CO₂-derived CNTs for integrated biorefinery and CO₂ utilization.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202501404DOI Listing

Publication Analysis

Top Keywords

carbon nanotubes
8
metals supported
8
supported co₂-derived
8
simultaneous electrochemical
4
electrochemical upgrading
4
upgrading biomass
4
biomass co₂ utilization
4
co₂ utilization fe/ni-derived
4
carbon
4
fe/ni-derived carbon
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!