Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Catalytic microswimmers convert the chemical energy from fuel into motion. They sustain chemical gradients and fluid flows that propel them by phoresis. This leads to unconventional behavior and collective dynamics, such as self-organization into complex structures. Characterizing the nonequilibrium interactions of microswimmers is crucial for advancing our understanding of active systems. However, this remains a challenge owing to the importance of fluctuations at the microscale and the difficulty in disentangling the different contributions to the interactions. Here, we show a massive dependence of the nonequilibrium interactions on the shape of catalytic microswimmers. We perform tracking experiments at high throughput to map interactions between nanocolloidal tracers and dimeric microswimmers of various aspect ratios. Our method leverages dual tracers with differing phoretic mobilities to quantitatively disentangle phoretic motion from hydrodynamic advection. This approach is validated through experiments on single chemically active sites and on immobilized catalytic microswimmers. We further investigate the activity-driven interactions of free microswimmers and directly measure their phoretic interactions. When compared to standard models, our findings highlight the important role of osmotic flows for microswimmers near surfaces and reveal an enhanced contribution of hydrodynamic advection relative to phoretic motion as the size of the microswimmer increases. Our study provides robust measurements of the nonequilibrium interactions from catalytic microswimmers and lays the groundwork for a realistic description of active systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.4c18078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!