Expert consensus on clinical genome sequencing interpretation and reporting.

Yi Chuan

Center for Rare Diseases, State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China.

Published: March 2025

Genome sequencing (GS) refers to a technology that comprehensively and systematically detects the DNA sequences of an individual's nuclear and mitochondrial genomes. It aims to identify genetic variants and investigate their roles in human health and disease progression. As an emerging diagnostic tool, GS offers significant support for clinical diagnosis due to its high throughput, accuracy, and comprehensiveness. However, the complexity of data analysis and interpretation requires substantial professional expertise and experience, posing considerable challenges. When applying GS technology for molecular diagnosis of genetic diseases, ethical and technical issues related to clinical application arise, including informed consent, diagnostic data interpretation, and defining the scope and content of clinical reports. This expert consensus outlines the core workflow of clinical genome sequencing (cGS), clarifies its testing scope and technical limitations, and provides key steps for data quality control, analysis, annotation, and variant interpretation. It also addresses controversial issues related to report content and informed consent. This consensus aims to assist professionals in accurately understanding and appropriately utilizing clinical genome sequencing, thereby improving diagnostic accuracy for genetic diseases, enhancing the clinical utility of the technology, and advancing medical scientific research.

Download full-text PDF

Source
http://dx.doi.org/10.16288/j.yczz.24-296DOI Listing

Publication Analysis

Top Keywords

genome sequencing
16
clinical genome
12
expert consensus
8
genetic diseases
8
informed consent
8
clinical
7
consensus clinical
4
genome
4
sequencing
4
interpretation
4

Similar Publications

Historical studies performed nearly a century ago using mouse skin models identified two key steps in cancer evolution: initiation, a likely mutational event, and promotion, driven by inflammation and cell proliferation. Initiation was proposed to be permanent, with promotion as the critical rate-limiting step for cancer development. Here, we carried out whole genome sequencing to demonstrate that initiated cells with thousands of mutagen-induced mutations can persist for long periods and are not removed by cell competition or by immune intervention, thus mimicking the persistence of cells with cancer driver mutations in normal human tissues.

View Article and Find Full Text PDF

Genetic factors contribute to the development of metabolic syndrome and subsequent arterial hypertension (AH). The study of the T786C polymorphism of the endothelial nitric oxide synthase (eNOS) gene in arterial hypertension is important as its correlation with adipokine imbalance is a novelty area to find associations between hypertension development, obesity, and heredity. The purpose of the current study was to investigate serum adipokines levels, depending on the T786C polymorphism of the eNOS in patients with arterial hypertension.

View Article and Find Full Text PDF

Heterozygous variants in the Early B cell factor 3 (EBF3) have been reported in individuals presenting with hypotonia, ataxia and delayed development syndrome (HADDS) (MIM#617330). However, individuals with pathogenic variants in EBF3 show phenotypic heterogeneity and very few variants in the C-terminal domain have been described. We report on a heterozygous de-novo variant in the EBF3 gene in an individual with neurodevelopmental delay and behavioural problems.

View Article and Find Full Text PDF

Oxygen plays a critical role in early neural development in brains, particularly before establishment of complete vasculature; however, it has seldom been investigated due to technical limitations. This study uses an in vitro human cerebral organoid model with multiomic analysis, integrating advanced microscopies and single-cell RNA sequencing, to monitor tissue oxygen tension during neural development. Results reveal a key period between weeks 4 and 6 with elevated intra-organoid oxygen tension, altered energy homeostasis, and rapid neurogenesis within the organoids.

View Article and Find Full Text PDF

Brain age gap (BAG), the deviation between estimated brain age and chronological age, is a promising marker of brain health. However, the genetic architecture and reliable targets for brain aging remains poorly understood. In this study, we estimate magnetic resonance imaging (MRI)-based brain age using deep learning models trained on the UK Biobank and validated with three external datasets.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!