Objectives: Colorectal cancer and gastric cancer are one of the most prevalent types of cancer and are leading causes of cancer-related mortality worldwide. The chemotherapy is insufficient due to the poor targeting and affinity of drugs, low therapeutic effectiveness, and significant side effects. Consequently, developing effective therapeutic formulations is crucial for treating colorectal and gastric cancers. () is a medicinal plant that has been investigated for medical research for cancer therapy owing to its rich phytochemical composition.
Methods: This study aims to evaluate the antiproliferative activity of leaf extract on NIH/3T3 fibroblast cells, AGS gastric, and Caco-2 colorectal cancer cell lines for 24 h using XTT cell viability assay. The apoptotic activity of was examined by detecting caspase 3/7 level in cells. The ROS levels in cells were measured using the DCFH-DA dye. Additionally, it assesses the interaction and binding affinities of the active compounds of with the overexpressed EPCAM through molecular docking.
Results: The results demonstrate a dose-dependent anticancer effect of on AGS and Caco-2 cell lines by reducing cell proliferation, increasing intracellular ROS accumulation and activating the caspase 3/7 apoptosis pathway. exhibited no significant cytotoxic effects on non-cancerous NIH/3T3 fibroblast cells. Molecular docking analysis confirmed the high binding affinity of active compounds in , such as apigenin, aucubin, baicalein, caffeic acid, and luteolin, towards the EpCAM protein overexpressed in gastric and colorectal cancer.
Conclusions: In conclusion, the can be a promising effective therapeutic strategy for gastrointestinal cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1515/jcim-2024-0340 | DOI Listing |
Int J Cancer
March 2025
Center for Epigenetics & Disease Prevention, Texas A&M HEALTH, and Department of Translational Medical Sciences, Texas A&M University Naresh K. Vashisht College of Medicine, Houston, Texas, USA.
A previously reported clinical trial in familial adenomatous polyposis (FAP) patients treated with erlotinib plus sulindac (ERL + SUL) highlighted immune response/interferon-γ signaling as a key pathway. In this study, we combine intermittent low-dose ERL ± SUL treatment in the polyposis in rat colon (Pirc) model with mechanistic studies on tumor-associated immune modulation. At clinically relevant doses, short-term (16 weeks) and long-term (46 weeks) ERL ± SUL administration results in near-complete tumor suppression in Pirc colon and duodenum (p < 0.
View Article and Find Full Text PDFCells
March 2025
Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico.
Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis.
View Article and Find Full Text PDFCells
March 2025
Faculté de Pharmacie, Université de Montréal, Montréal, QC H3C 3J7, Canada.
Macrophage mitochondrial dysfunction, caused by oxidative stress, has been proposed as an essential event in the progression of chronic inflammation diseases, such as atherosclerosis. The cluster of differentiation-36 (CD36) and lectin-like oxLDL receptor-1 (LOX-1) scavenger receptors mediate macrophage uptake of oxidized low-density lipoprotein (oxLDL), which contributes to mitochondrial dysfunction by sustained production of mitochondrial reactive oxygen species (mtROS), as well as membrane depolarization. In the present study, the antioxidant mechanisms of action of the selective synthetic azapeptide CD36 ligand MPE-298 have been revealed.
View Article and Find Full Text PDFCells
March 2025
Renal Division, Department of Medicine IV, Ludwig-Maximilians-University (LMU) Hospital, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany.
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury.
View Article and Find Full Text PDFCells
March 2025
Key Laboratory of Swine Genetics and Breeding of the Ministry of Agriculture and Rural Afairs, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
Non-coding genes, such as microRNA and lncRNA, which have been widely studied, play an important role in the regulatory network of skeletal muscle development. However, the functions and mechanisms of most non-coding RNAs in skeletal muscle regulatory networks are unclear. This study investigated the function and mechanism of in muscle growth and development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!