A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Wearable transdermal drug delivery system controlled by wirelessly powered acoustic waves. | LitMetric

Transdermal drug administration offers an alternative route for drug delivery through the skin, and surface acoustic wave (SAW) technology has recently emerged as a promising approach to enhance this process. However, conventional cable-connected SAW control units face several challenges, including inconvenience, poor wearability, limited miniaturization and integration, and restricted reusability. This study introduces a wireless-powered transport strategy for the transdermal delivery of large drug molecules using a thin-film-based SAW platform. This approach leverages interfacial acoustic stimulation, localized acoustic heating, and streaming/micro-cavitation to enhance drug penetration. By eliminating the need for physical connections, the wireless power transfer system reduces potential heating effects and localized tissue damage. To evaluate its performance, synthetic skin-like agarose gel and pig skin tissue were used as models. Hyaluronate rhodamine (5000 Da) was successfully delivered transdermally into pig skin tissue, achieving approximately 77.89 % of the efficiency observed with a conventional cable-connected SAW platform. These findings highlight wireless SAW technology as a promising alternative for enhancing transdermal drug delivery, offering a safer, more effective, and user-friendly therapeutic solution for patients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2025.113619DOI Listing

Publication Analysis

Top Keywords

transdermal drug
12
drug delivery
12
conventional cable-connected
8
pig skin
8
skin tissue
8
drug
6
wearable transdermal
4
delivery
4
delivery system
4
system controlled
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!