Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Different transition metals (Fe, Cu, Mn, Ce) were used to prepare and characterise catalysts on ZSM-5 via impregnation, for the selective reduction of NO with NH. The Fe/ZSM-5 catalyst exhibited excellent NH-SCR activity in the 350-450°C temperature range, with a 96.91% NO conversion rate at 431°C. Moreover, the Ce/ZSM-5 and Cu/ZSM-5 catalysts showed superior catalytic activity at low temperatures (88.33% at 250°C and 91.82% at 289°C), while the Mn-modified catalysts exhibited a poor denitrification performance. The results also revealed that metal oxides improved metal ion dispersion, and the Fe and Cu active components were well distributed on the surface of the carrier. Moreover, Lewis acid sites predominately occurred in the active components of the Fe and Cu species, which increases the adsorption capacity. Among the four different metal-supported catalysts, Cu-ZSM-5 had the smallest activation energy. Highly dispersed metal ion active nanoparticles, improved redox properties, and rich acid centres are conducive to the reaction. The In-situ DRIFTs study found that Lewis acid sites play an important role in the denitrification reaction. The apparent reaction activation energy of Cu-ZSM-5 catalyst in four different metal-supported catalysts is the smallest, with an activation energy of 35.1 kJ mol.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/09593330.2025.2474259 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!