The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis (dNG) or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model, whereby successive generations of PNs sequentially migrate first to deep and then progressively to more superficial layers. However, its biological significance remains unclear, and the role of iNG in this process is unknown. Using genetic strategies linking PN birth dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviates from a stringent inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times. The overarching scheme of iNG is the sequential specification and precise laminar deployment of projection-defined PN types, which may contribute to the orderly assembly of cortical output channels and processing streams.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.devcel.2025.02.009 | DOI Listing |
Dev Cell
March 2025
Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Department of Biomedical Engineering, Duke University, Durham, NC, USA; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. Electronic address:
The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis (dNG) or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model, whereby successive generations of PNs sequentially migrate first to deep and then progressively to more superficial layers. However, its biological significance remains unclear, and the role of iNG in this process is unknown.
View Article and Find Full Text PDFSci Total Environ
January 2025
Institute of Experimental Medicine of the Czech Academy of Sciences, Videnska 1084, Prague 4, Czech Republic.
Exposure of cell cultures at air-liquid interface (ALI), mimicking i.e. human lung surface, is believed to be one of the most realistic means to model toxicity of complex mixtures of pollutants on human health.
View Article and Find Full Text PDFNat Commun
June 2024
Department of Psychiatry, Yale University, New Haven, CT, 06511, USA.
Spatial attention is critical for recognizing behaviorally relevant objects in a cluttered environment. How the deployment of spatial attention aids the hierarchical computations of object recognition remains unclear. We investigated this in the laminar cortical network of visual area V4, an area strongly modulated by attention.
View Article and Find Full Text PDFUnlabelled: The cerebral cortex comprises diverse types of glutamatergic projection neurons (PNs) generated from radial glial progenitors (RGs) through either direct neurogenesis or indirect neurogenesis (iNG) via intermediate progenitors (IPs). A foundational concept in corticogenesis is the "inside-out" model whereby successive generations of PNs sequentially migrate to deep then progressively more superficial layers, but its biological significance remains unclear; and the role of iNG in this process is unknown. Using genetic strategies linking PN birth-dating to projection mapping in mice, we found that the laminar deployment of IP-derived PNs substantially deviate from an inside-out rule: PNs destined to non-consecutive layers are generated at the same time, and different PN types of the same layer are generated at non-contiguous times.
View Article and Find Full Text PDFMicromachines (Basel)
April 2023
Department of Biomedical Engineering, Chang Gung University, Taoyuan City 333, Taiwan.
Microfluidics is a rapidly growing discipline that involves studying and manipulating fluids at reduced length scale and volume, typically on the scale of micro- or nanoliters. Under the reduced length scale and larger surface-to-volume ratio, advantages of low reagent consumption, faster reaction kinetics, and more compact systems are evident in microfluidics. However, miniaturization of microfluidic chips and systems introduces challenges of stricter tolerances in designing and controlling them for interdisciplinary applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!