Exposure to di-n-butyl phthalate (DBP) during embryo development or lactation has been linked to reproductive toxicity. The ten-eleven translocation (TET) protein family plays a role in various pathological processes; however, its involvement in reproductive dysfunction in offspring mice exposed to DBP during gestation remains sparsely reported. In this study, SPF C57BL/6 pregnant mice were intragastrically administered DBP at doses of 0.5, 5, and 75 mg/kg body weight, or corn oil as a control, from gestational days 5-19. Following weaning, the offspring mice were maintained on a standard diet for 5 weeks. Additionally, mono-n-butyl phthalate (MBP)-induced TM3 cells were utilized to explore the underlying mechanisms in vitro. The results showed that in utero exposure to DBP resulted in diminished sperm quality, testicular damage, decreased reproductive hormone levels, and reduced expression of testosterone synthesis proteins in male offspring mice. Moreover, DBP exposure influenced the expression of steroidogenic acute regulatory protein (StAR) via the cAMP/PKA signaling pathway, associated with luteinizing hormone receptor (LHR)-mediated suppression of testosterone synthesis. Notably, DBP exposure led to decreased expression of TET methylcytosine dioxygenase 2 (TET2) in the progeny, and overexpression or silencing of TET2 affected the levels of proteins involved in the LHR-mediated testosterone synthesis pathway. Further investigations revealed that TET2 downregulation inhibits testosterone synthesis through the LHR-mediated LH/cAMP/PKA/StAR signaling pathway, ultimately impairing reproductive function in DBP-exposed offspring mice during gestation. This study provides a novel perspective for identifying molecular markers that may be more sensitive indicators of male reproductive damage from an epigenetic standpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2025.118025 | DOI Listing |
Metab Brain Dis
March 2025
Cardio/Endo-Metabolic and Epigenetics Research Unit, Department of Physiology, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, 360101, Nigeria.
Background: Polycystic ovary syndrome (PCOS) is a common endocrinometabolic disorder affecting women of reproductive age, characterized by hormonal imbalances, irregular menstrual cycles, and often, infertility. Hypothalamic amenorrhea, a condition marked by the cessation of menstruation due to disruptions in the hypothalamic-pituitary-gonadal axis, is a frequent manifestation in PCOS. Probiotics, beneficial microorganisms known for improving metabolic health, have shown promise in restoring hormonal balance and enhancing fertility.
View Article and Find Full Text PDFEarly-onset androgenetic alopecia (AGA) is a common, hereditary hair loss condition in men, often starting in the early twenties. It involves gradual thinning of hair, influenced by genetics, hormones, and other factors like smoking and family history. Early identification of these risks could support timely intervention.
View Article and Find Full Text PDFCells
March 2025
Research Department, Royal College of Surgeons of Ireland, Busaiteen, Adliya P.O. Box 15503, Bahrain.
: Rat sarcoma (Ras) proteins, Kirsten, Harvey, and Neuroblastoma rat sarcoma viral oncogene homolog (KRAS, HRAS, and NRAS, respectively), are a family of GTPases, which are key regulators of cellular growth, differentiation, and apoptosis through signal transduction pathways modulated by growth factors that have been recognized to be dysregulated in PCOS. This study explores Ras signaling proteins and growth factor-related proteins in polycystic ovary syndrome (PCOS). : In a well-validated PCOS database of 147 PCOS and 97 control women, plasma was batch analyzed using Somascan proteomic analysis for circulating KRas, Ras GTPase-activating protein-1 (RASA1), and 45 growth factor-related proteins.
View Article and Find Full Text PDFCells
February 2025
Department of Physiology, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan.
The sex-specific development of hippocampal learning in juveniles remains unclear. Using an inhibitory avoidance task, we assessed contextual learning in both sexes of juvenile rats. While sex hormone levels and activating effects are low in juveniles, females showed superior performance to males, suggesting that females have a shorter period of infantile amnesia than males.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Nutrition Science, Purdue University, West Lafayette, IN, USA.
The gut microbiome is known to have a bidirectional relationship with sex hormone homeostasis; however, its role in mediating interactions between the primary regulatory axes of sex hormones and their productions is yet to be fully understood. We utilized both conventionally raised and gnotobiotic mouse models to investigate the regulatory role of the gut microbiome on the hypothalamic-pituitary-gonadal (HPG) axis. Male and female conventionally raised mice underwent surgical modifications as follows: (1) hormonally intact controls; (2) gonadectomized males and females; (3) gonadectomized males and females supplemented with testosterone and estrogen, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!