Quantifying proteins involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs is essential to improve understanding of their disposition and pharmacokinetics. Proteomics, because of its great versatility, is a widely used approach for protein analysis. However, existing protocols face challenges, such as poor peptide identification in liquid chromatography with tandem mass spectrometry under multiple reaction monitoring mode as well as the time- and labor-intensive nature of detergent-engaged workflows. In this study, we compared and evaluated several targeted ADME proteomic methods, including a novel approach called Fast Surfactant-Treated (FAST). Using FAST in ADME proteome analysis of primary human hepatocytes revealed that most proteins, especially membrane proteins, were efficiently solubilized and digested, with the ionic detergent sodium deoxycholate and rapidly removed during preparation by the incorporation of a centrifugation step following acetonitrile precipitation. Compared with the traditional proteomic workflow involving dithiothreitol reduction and iodoacetamide alkylation, FAST achieved an approximately 4-fold increase in cytochrome P450 and UDP-glucuronosyltransferases quantification and 5-fold increase in transporters, based on endogenous tryptic peptide signals. For specific proteins such as CYP2J2, organic anion transporter, and organic anion transporting polypeptide 1B1, FAST generated peptide quantification peaks with significantly higher signal-to-noise ratios and in a shorter amount of sample processing time. We then further validated the FAST proteomics workflow using the pregnane X receptor agonist rifampicin in human hepatocytes, which revealed that CYP3A4 protein levels were induced to a similar extent as observed in the CYP3A midazolam-1'-hydroxylase activity assay. Altogether, these results suggest that FAST proteomics is a robust, efficient, and versatile method for ADME bioanalysis. SIGNIFICANCE STATEMENT: Quantifying absorption, distribution, metabolism, and excretion (ADME) proteins from in vitro matrices remains a challenge, particularly when speed and efficiency are critical. By incorporating sodium deoxycholate detergent into the ADME proteome sample preparation workflow, we developed a methodology called Fast Surfactant-Treated proteomics. This approach enabled more efficient quantification of drug-metabolizing enzymes and membrane transporters, offering a streamlined protocol with reduced bench time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dmd.2025.100048 | DOI Listing |
PLoS Comput Biol
March 2025
Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America.
Advancements with cost-effective, high-throughput omics technologies have had a transformative effect on both fundamental and translational research in the medical sciences. These advancements have facilitated a departure from the traditional view of human red blood cells (RBCs) as mere carriers of hemoglobin, devoid of significant biological complexity. Over the past decade, proteomic analyses have identified a growing number of different proteins present within RBCs, enabling systems biology analysis of their physiological functions.
View Article and Find Full Text PDFDrug Metab Dispos
February 2025
Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc, Groton, Connecticut.
Quantifying proteins involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs is essential to improve understanding of their disposition and pharmacokinetics. Proteomics, because of its great versatility, is a widely used approach for protein analysis. However, existing protocols face challenges, such as poor peptide identification in liquid chromatography with tandem mass spectrometry under multiple reaction monitoring mode as well as the time- and labor-intensive nature of detergent-engaged workflows.
View Article and Find Full Text PDFJ Proteome Res
March 2025
Department of Molecular Biosciences, Northwestern University, Evanston, Illinois 60208, United States.
Proteoforms are distinct molecular forms of proteins that act as building blocks of organisms, with post-translational modifications (PTMs) being one of the key changes that generate these variations. Mass spectrometry (MS)-based top-down proteomics (TDP) is the leading technology for proteoform identification due to its preservation of intact proteoforms for analysis, making it well-suited for comprehensive PTM characterization. A crucial step in TDP is searching MS data against a database of candidate proteoforms.
View Article and Find Full Text PDFCurr Pharmacol Rep
February 2025
Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854 USA.
Purpose Of Review: In this review article, specific emphasis is on evolution of metabolomics in cancer research, metabolomics workflow, general understanding of liquid chromatography - mass spectrometry (LC-MS) based platform for quantitation of metabolites, their biological interpretation and the application in carcinogenesis and cancer prevention by dietary phytochemicals.
Recent findings: Metabolomics is increasingly becoming a preferred approach for next generation metabolic screening and has profound impact on medical practice. Metabolomics describes the end products of biochemical processes which are greatly influenced by genetic and environmental factors.
Liquid handling robots have been developed to automate various steps of the bottom-up proteomics workflow, however, protocols for the generation of isobarically labeled peptides remain limited. Existing methods often require costly specialty devices and are constrained by fixed workflows. To address this, we developed a cost-effective, flexible, automated sample preparation protocol for TMT-labeled peptides using the Biomek i5 liquid handler.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!