The mechanisms by which cell wall polysaccharides regulate phenolic release are essential to human health. Scanning electron microscopy (SEM), surface area and porosimetry analyzer, high-performance liquid chromatography (HPLC), and atomic force microscopy (AFM) indicated that compared to fresh plums, postharvest ripening reduced chain linearity in the homogalacturonan region of pectins and the degree of branching of RG-I; pectin and hemicellulose underwent solubilization and depolymerization by cell wall-degrading enzymes; and the specific surface area of cellulose was reduced by 19.5 %-26.8 %, with aggregation of cellulose occurring. In addition, confocal laser scanning microscopy (CLSM), polyphenol adsorption experiments, and in vitro gastrointestinal digestion experiments showed that the cell wall modifications under postharvest ripening process induced phenolics release and increased the bioaccessibility of plums: compared to the fresh plums, the equilibrium adsorption capacity of the cell wall of late postharvest ripened plums was reduced by 42.6 % (for epicatechin) and 27.4 % (for chlorogenic acid), and the bioaccessibility index of postharvest plum phenolics was increased by 11.2 %-23.9 %. These findings indicate cell wall modification under postharvest ripening process induces phenolic release and improves plum phenolic bioavailability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2025.143780DOI Listing

Publication Analysis

Top Keywords

cell wall
20
postharvest ripening
12
plum phenolic
8
phenolic bioavailability
8
phenolic release
8
surface area
8
compared fresh
8
fresh plums
8
ripening process
8
postharvest
6

Similar Publications

Postoperative adhesions are abrogated by a sustained-release anti-JUN therapeutic in preclinical models.

Sci Transl Med

March 2025

Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.

Postoperative abdominal adhesions are the leading cause of bowel obstruction and a cause of chronic pain and infertility. Adhesion formation occurs after 50 to 90% of abdominal operations and has no proven preventative or treatment strategy. Abdominal adhesions derive primarily from the visceral peritoneum and are composed of polyclonally proliferating tissue-resident fibroblasts.

View Article and Find Full Text PDF

Splenic red pulp macrophages eliminate the liver-resistant from the blood circulation of mice.

Sci Adv

March 2025

Center for Infectious Biology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China.

Invasive infections by encapsulated bacteria are the major cause of human morbidity and mortality. The liver resident macrophages, Kupffer cells, form the hepatic firewall to clear many encapsulated bacteria in the blood circulation but fail to control certain high-virulence capsule types. Here we report that the spleen is the backup immune organ to clear the liver-resistant serotypes of (pneumococcus), a leading human pathogen.

View Article and Find Full Text PDF

Introduction: Antimicrobial resistance (AMR) is one of the major global concerns in the current scenario. Mass-gathering events in fast-developing and densely populated areas may contribute to antibiotic resistance. Despite meticulous planning and infrastructure development, the effect of mass gatherings on microbial ecosystems and antibiotic resistance must be investigated.

View Article and Find Full Text PDF

Biological structures provide inspiration for developing advanced materials from sustainable resources, enabling passive structural morphing. Despite an increasing interest for parsimony-oriented innovation, sustainable shape-changing materials based on renewable resources remain underexplored. In this work, the architecture of a single plant fiber cell wall (S, for instance) is simplified to design novel concepts of 4D printed tubular moisture-driven structural actuators, using the hygromorphic properties of continuous flax fiber (cFF) reinforced materials.

View Article and Find Full Text PDF

MicroRNAs function as post-transcriptional regulators in gene expression and control a broad range of biological processes in metazoans. The formation of multinucleated muscles is essential for locomotion, growth, and muscle repair. microRNAs have also emerged as important regulators for muscle development and function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!