Background And Objectives: Reflex syncope (RS) is the most common type of syncope caused by dysregulation of the autonomic nervous system. Diagnosing RS typically involves the head-up tilt test (HUTT), which tracks physiological signals such as blood pressure and electrocardiograms during postural changes. However, the HUTT is time-consuming and may trigger RS symptoms in patients. Therefore, a real-time monitoring system for RS risk assessment is necessary to enhance medical efficiency and patient convenience. Although several methods have been developed, most depend on manually extracted features from physiological signals, making them susceptible to feature extraction methods and signal noise.
Methods: This study introduces a deep learning-based method for real-time RS detection. This method removes the need for manually extracted features by employing an end-to-end architecture consisting of residual and squeeze-and-excitation blocks. The likelihood of RS occurrence was quantified using the proposed method by analyzing a raw blood pressure signal.
Results: Data from 1348 patients (1291 normal and 57 with RS) were used to develop and evaluate the proposed method. The area under the receiver operating characteristic curve was 0.972 for RS detection using ten-fold cross-validation. A threshold between zero and one can adjust the performance characteristics of the proposed method. At a threshold of 0.75, the method achieved sensitivity and specificity values of 94.74 and 94.27 %, respectively. Notably, the technique detected RS 165.35 s before its occurrence, on average.
Conclusions: The proposed method outperformed conventional methods in RS detection. In addition to its excellent detection performance, this method only requires blood pressure monitoring, reducing reliance on the number of input signals and enhancing its applicability compared to procedures that require multiple signals. These advantages contribute to the development of safer, more convenient, and more efficient RS detection systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2025.108622 | DOI Listing |
JMIR Med Educ
March 2025
Division of Pulmonary, Critical Care, & Sleep Medicine, Department of Medicine, NYU Grossman School of Medicine, 550 First Avenue, 15th Floor, Medical ICU, New York, NY, 10016, United States, 1 2122635800.
Background: Although technology is rapidly advancing in immersive virtual reality (VR) simulation, there is a paucity of literature to guide its implementation into health professions education, and there are no described best practices for the development of this evolving technology.
Objective: We conducted a qualitative study using semistructured interviews with early adopters of immersive VR simulation technology to investigate use and motivations behind using this technology in educational practice, and to identify the educational needs that this technology can address.
Methods: We conducted 16 interviews with VR early adopters.
Inorg Chem
March 2025
College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China.
Cesium-lead halide perovskite nanomaterials have been considered new-generation emitters that can meet the requirements of high photoluminescence efficiency and the high color standard of Rec. 2020. However, their practical application is currently hindered by the challenge of achieving better stability and growth in green solvents.
View Article and Find Full Text PDFNano Lett
March 2025
College of Physics, Weihai Innovation Research Institute, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China.
Ferromagnetic metals, distinguished by high Curie temperatures and magnetization, are crucial in voltage-controlled magnetism for potential room-temperature applications in low-power multifunctional devices. Despite numerous attempts based on various mechanisms, achieving ideal magnetic modulation in metals remains challenging. This work proposes a new mechanism to control bulk metal magnetism by modulating valence electron filling in spin-polarized bands, leveraging the Slater-Pauling rule in alloys.
View Article and Find Full Text PDFBioinformatics
March 2025
Department of Statistics, Hunan University, Changsha, 410000, China.
Motivation: Inferring gene networks provides insights into biological pathways and functional relationships among genes. When gene expression samples exhibit heterogeneity, they may originate from unknown subtypes, prompting the utilization of mixture Gaussian graphical model for simultaneous subclassification and gene network inference. However, this method overlooks the heterogeneity of network relationships across subtypes and does not sufficiently emphasize shared relationships.
View Article and Find Full Text PDFElife
March 2025
Machine Learning Core, National Institute of Mental Health, Bethesda, United States.
Fiber photometry has become a popular technique to measure neural activity in vivo, but common analysis strategies can reduce the detection of effects because they condense signals into summary measures, and discard trial-level information by averaging . We propose a novel photometry statistical framework based on functional linear mixed modeling, which enables hypothesis testing of variable effects at , and uses trial-level signals without averaging. This makes it possible to compare the timing and magnitude of signals across conditions while accounting for between-animal differences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!