A novel label-free immunosensor for detection of VEGF using FFT admittance voltammetry.

Bioelectrochemistry

Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.; Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran; Dept. of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada. Electronic address:

Published: February 2025

This study presents a novel, label-free electrochemical immunosensor for the detection of vascular endothelial growth factor (VEGF), a crucial tumor biomarker. The immunosensor was developed by electrochemical deposition of gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite on glassy carbon (GC) and screen-printed carbon (SPC) electrodes. A specific monoclonal antibody against VEGF was immobilized on the electrode surface through a carbodiimide coupling reaction. Field Emission Scanning Electron Microscopy (FE-SEM), X-ray Diffraction (XRD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) have been used to characterize the developed immunosensor. For quantitative measurement of VEGF, fast Fourier transformation admittance voltammetry was employed by applying a special potential waveform on the immunosensor and sampling the currents. The response was determined by measuring changes in the electrode admittance caused by the adsorption of VEGF molecules, without the use of a redox probe. Under optimal conditions, the immunosensor responses were within a linear detection range for VEGF from 0.1 to 10,000 pg/ml and from 10 to 10,000 pg/ml, with notably low detection limits of 29.1 fg/ml and 352 fg/ml for the modified GC and SPC electrodes, respectively. The sensor exhibits minimal interference from common serum proteins, making it a promising candidate for sensitive, low-cost commercialization.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2025.108948DOI Listing

Publication Analysis

Top Keywords

novel label-free
8
immunosensor detection
8
admittance voltammetry
8
spc electrodes
8
immunosensor
6
vegf
6
label-free immunosensor
4
detection
4
detection vegf
4
vegf fft
4

Similar Publications

A novel label-free immunosensor for detection of VEGF using FFT admittance voltammetry.

Bioelectrochemistry

February 2025

Chemistry Faculty, School of Sciences, University of Tehran, Tehran, Iran.; Endocrinology & Metabolism Research Center, Tehran University of Medical Sciences, Tehran, Iran; Dept. of Electrical Engineering and Computer Science, Lassonde School of Engineering, York University, Toronto, Canada. Electronic address:

This study presents a novel, label-free electrochemical immunosensor for the detection of vascular endothelial growth factor (VEGF), a crucial tumor biomarker. The immunosensor was developed by electrochemical deposition of gold nanoparticles-reduced graphene oxide (AuNPs-rGO) nanocomposite on glassy carbon (GC) and screen-printed carbon (SPC) electrodes. A specific monoclonal antibody against VEGF was immobilized on the electrode surface through a carbodiimide coupling reaction.

View Article and Find Full Text PDF

Neurodegeneration presents a significant challenge in ageing populations, often being detected too late for effective intervention. Biomarkers have shown great potential in addressing this issue, with neurofilament (Nf) proteins emerging as validated biomarkers presently transitioning from research to routine laboratory use. Whilst advances in large-scale quantitative analyses have enabled the targeted study of proteolytic Nf fragments in blood, the complete landscape of the Nf proteolytic breakdown remains unknown.

View Article and Find Full Text PDF

The phosphorylation of nucleic acids mediated by 5'-polynucleotide kinase (PNK) exerts a crucial regulatory function in a wide range of significant cellular activities. Nevertheless, the current approaches for detecting PNK require expensive labeled probes and complex instrumentation, making it impossible to achieve real-time, on-site, and rapid analysis. Here, we take T4 PNK as a model and establish a novel colorimetric strategy for the detection of PNK activity and its inhibition by means of a coupled enzyme-assisted cyclic strand displacement amplification (SDA) and peptide nucleic acid (PNA)-gold nanoparticle (AuNP) based platform.

View Article and Find Full Text PDF

Sensitive and specific biomarkers are needed for early diagnosis of neurodegenerative diseases, such as Alzheimer's disease (AD). Herein, a new type of chiral gold nanostructure induced by D-/L-cysteine-leucine dipeptides with a g-factor of 0.1 was successfully synthesized.

View Article and Find Full Text PDF

Development of a novel label-free NIR aptasensor based on triphenylmethane dyes for rapid and sensitive detection of copper ions.

Anal Methods

March 2025

Henan Linker Technology Key Laboratory, College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, China.

Heavy metal pollution, particularly from copper ions (Cu), poses a significant threat to both the ecological environment and human health. However, traditional copper ion analysis techniques are often hindered by the need for expensive equipment, labor-intensive sample preparation and skilled operation, which limits their effectiveness for field and real-time applications. In this work, we report a novel near-infrared aptamer sensor (NIRApt) that originates from the binding reaction between the DNA aptamer Apt and the fluorescent small molecule crystal violet (CV), enabling rapid detection of Cu through the competitive effect of Cu with Apt.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!