The early secretory pathway governs the transport of thousands of secreted and transmembrane proteins and lipids from the endoplasmic reticulum (ER) to juxtaposed ER-Golgi Intermediate Compartments (ERGIC). This process is largely directed by Coat Protein complex II (COPII), which accumulates on distinct, ribosome-free ER subdomains (transitional ER) to generate highly curved transport intermediates of various sizes and shapes. The rate of secretory flux from the ER can vary significantly, depending on cell type, environmental cues, and other factors, but the mechanisms that regulate COPII-mediated trafficking have been slow to emerge. Here, we focus on recent progress that has contributed to our understanding of how the early secretory pathway is structured to facilitate the export of cargoes from the ER into a chasm approximately 300-500-nm in size, prior to fusion with ERGIC membranes without the aid of cytoskeletal elements to guide their journey.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ceb.2025.102492 | DOI Listing |
Indian J Otolaryngol Head Neck Surg
February 2025
Department of Pathology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India.
Pituitary adenomas, the second most common intracranial pathology, often exhibit symptoms beyond the classic triad of headache, visual disturbances, and hormonal imbalances. Unusual presentations involve sinonasal pathology, cranial nerve involvement, and mass effects on adjacent structures like the skull base. Secretory adenomas may manifest hormonal changes and their effects.
View Article and Find Full Text PDFCurr Opin Cell Biol
March 2025
Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706, USA. Electronic address:
The early secretory pathway governs the transport of thousands of secreted and transmembrane proteins and lipids from the endoplasmic reticulum (ER) to juxtaposed ER-Golgi Intermediate Compartments (ERGIC). This process is largely directed by Coat Protein complex II (COPII), which accumulates on distinct, ribosome-free ER subdomains (transitional ER) to generate highly curved transport intermediates of various sizes and shapes. The rate of secretory flux from the ER can vary significantly, depending on cell type, environmental cues, and other factors, but the mechanisms that regulate COPII-mediated trafficking have been slow to emerge.
View Article and Find Full Text PDFSemin Immunopathol
March 2025
Department of Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, People's Republic of China.
Decidualization, the transformation of endometrial stromal cells into specialized decidual cells, is essential for embryo implantation and pregnancy maintenance. This process involves immune cell infiltration, especially decidual natural killer (dNK) cells, which regulate immune responses and support tissue remodeling. Recent findings suggest that cellular senescence during decidualization is not just a byproduct but plays a functional role in enhancing uterine receptivity.
View Article and Find Full Text PDFFront Pharmacol
February 2025
Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
Objective: Intestinal current measurement (ICM) provides a sensitive bioassay for assessment of cystic fibrosis transmembrane conductance regulator (CFTR) function in rectal biopsies and is used as a diagnostic tool for cystic fibrosis (CF). Furthermore, ICM was shown to be sensitive to detect pharmacological rescue of CFTR function by CFTR modulators in people with CF carrying responsive mutations. Results from clinical trials of CFTR modulators across age groups indicate that CFTR function in the sweat duct may be age-dependent with children reaching higher levels than adults.
View Article and Find Full Text PDFJ Infect Dis
March 2025
Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Infectious Diseases, Respiratory Medicine and Critical Care, Berlin, Germany.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) primarily targets ciliated cells during the initial infection of the upper respiratory tract. Since uncertainties persist regarding other involved epithelial cell types, we here utilized viral replication analysis, single-cell RNA sequencing, and spectral microscopy on infected air-liquid interface cultures of human primary nasal and bronchial epithelial cells to discern cell type proportions in relation to SARS-CoV-2 tropism and immune activation. We revealed that, next to ciliated and secretory cells, SARS-CoV-2 (wild type and lineage B1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!