A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Camera-based evaluation of deep breathing effects on plantar foot microcirculation - A pilot study on young healthy. | LitMetric

Camera-based evaluation of deep breathing effects on plantar foot microcirculation - A pilot study on young healthy.

Comput Biol Med

Dept. of Electromagnetic and Biomedical Engineering, Faculty of Electrical Engineering and Information Technology, University of Zilina, Zilina, Slovakia. Electronic address:

Published: March 2025

Background: Microvascular function, particularly of the plantar foot, reflects overall vascular health and is influenced by physiological oscillators such as heart rate, respiratory, myogenic, and neurogenic rhythms. Slow deep breathing modulates autonomic nervous system activity and affects peripheral microcirculation. This study investigates the effects of slow deep breathing on plantar foot perfusion using photoplethysmography imaging (PPGI).

Methods: Twenty healthy young adults participated in a four-stage protocol: baseline, deep breathing test (DBT), and two recovery stages (REST1 and REST2). PPGI was used to measure changes in plantar foot perfusion, focusing on energy, amplitude, and phase synchronization within frequency bands corresponding to key physiological oscillators. Time-frequency analyses and advanced signal processing were applied to assess these parameters.

Results: Significant increases in energy were observed in all frequency bands during DBT, with slow frequency oscillators (SFOs) maintaining elevated activity up to 5 min after DBT. Amplitude analysis revealed a significant decrease in the first and second harmonic components of the heart rate signals during DBT. Phase synchronization between medial and lateral foot regions improved for respiratory, myogenic, and neurogenic frequency bands during DBT, with myogenic synchronization persisting for up to 2.5 min after DBT.

Conclusions: Slow deep breathing enhances microvascular perfusion and synchronizes autonomic oscillators in healthy individuals. PPGI proved effective in capturing these dynamics, indicating its potential as a non-invasive tool for assessing autonomic and microvascular function. Future research should explore its applicability in detecting early autonomic or vascular dysfunction in clinical populations.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2025.109996DOI Listing

Publication Analysis

Top Keywords

deep breathing
20
plantar foot
16
slow deep
12
frequency bands
12
microvascular function
8
physiological oscillators
8
heart rate
8
respiratory myogenic
8
myogenic neurogenic
8
foot perfusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!