A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Bioinformatics-focused identification of metabolomic Markers in coronary microvascular disease. | LitMetric

Bioinformatics-focused identification of metabolomic Markers in coronary microvascular disease.

Comput Biol Med

Department of Cardiology, Cardiovascualr Imaging Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China. Electronic address:

Published: March 2025

Background: Coronary microvascular disease (CMVD), marked by dysfunction of the small coronary vessels, poses significant diagnostic challenges due to the complexity and high cost of current procedures like the index of microcirculatory resistance (IMR). This study aimed to identify metabolomic biomarkers from coronary artery samples to facilitate CMVD diagnosis using advanced bioinformatics techniques-specifically, random forest algorithms and generalized linear models (GLMs)-to develop more cost-effective blood-based diagnostics.

Methods: In this prospective study, 68 patients scheduled for coronary angiography and IMR assessment were enrolled. Plasma samples obtained from their coronary arteries were analyzed using untargeted metabolomics with liquid chromatography-mass spectrometry. Advanced bioinformatics methods were applied: random forest algorithms were utilized for feature selection to identify significant metabolites, and GLMs were constructed for predictive modeling. The diagnostic performance of the models was evaluated through receiver operating characteristic (ROC) curve analysis.

Results: The random forest analysis identified the top 10 metabolites that significantly contributed to the classification of CMVD. The GLM built using these metabolites demonstrated excellent diagnostic accuracy, achieving area under the ROC curve (AUC) values of 0.984 in the initial (discovery) cohort and 0.938 in the subsequent (validation) cohort. The use of mathematical modeling enhanced the robustness and interpretability of the biomarker selection process.

Conclusions: Advanced bioinformatics techniques, including random forest algorithms and GLMs, effectively identified key metabolites associated with CMVD. While the collection of coronary artery blood samples is invasive due to the necessity of coronary angiography, this method offers a more practical and cost-effective alternative to IMR measurement, potentially improving the diagnostic approach for CMVD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2025.109992DOI Listing

Publication Analysis

Top Keywords

random forest
16
advanced bioinformatics
12
forest algorithms
12
coronary
8
coronary microvascular
8
microvascular disease
8
coronary artery
8
coronary angiography
8
roc curve
8
cmvd
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!