Responses of gut microbiota to altitude in a small mammal on Qinghai-Tibetan Plateau.

Comp Biochem Physiol Part D Genomics Proteomics

Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Qinghai Province Key Laboratory of Animal Ecological Genomics, Xining 810008, China; Academy of Plateau Science and Sustainability, People's Government of Qinghai Province and Beijing Normal University, Xining 810016, China. Electronic address:

Published: March 2025

Altitude of the plateau may affect the composition and functional diversity of animal gut microbiota. However, the specific effects of altitude on the composition, community structure, and function of the host's gut microbiota, as well as how these effects, through interactions between microbial metabolic products (e.g., SCFAs) and microbial diversity, support host adaptation to high-altitude environments, remain unclear. This study investigates the variations of gut microbial community structure and function in plateau pikas (Ochotona curzoniae) along altitude on Qinghai-Tibetan Plateau. Cecum contents were analyzed using 16S rRNA sequencing and short-chain fatty acid (SCFA) content analyses to explore the structure, function and metabolic characteristics gut microbiota across different altitudes. As altitude increases, pikas' gut microbiota diversity significantly decreased, SCFA levels did not significantly change, while both diversity and complexity of the microbiota co-occurrence networks significantly decreased. The microbial community shifted toward better suited to high-altitude environments, as significantly increased in Bacteroidetes abundance but decreased in Firmicutes abundance. The microbial community assembly process became more deterministic, and KEGG analysis revealed the upregulation of metabolic, genetic information processing, and organismal system pathways. These results indicated that the gut microbiota diversity and complexity decreased in plateau pikas with increasing altitude, along with the upregulation of key metabolic pathways, as well as the stability of SCFA levels which reflecting balanced supply-demand relationships, contribute to adaptation of high-altitude environments. These findings reveal the substantial impact of altitude on the gut microbiota of a small mammal inhabiting the plateau, providing new insights into its adaptation mechanisms to high-altitude environments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbd.2025.101467DOI Listing

Publication Analysis

Top Keywords

gut microbiota
28
high-altitude environments
16
structure function
12
microbial community
12
microbiota
8
small mammal
8
qinghai-tibetan plateau
8
community structure
8
adaptation high-altitude
8
plateau pikas
8

Similar Publications

Background: This study aimed to comprehensively characterize the gut microbiome and identify individual and grouped gut microbes associated with food allergy (FA) using 16S rRNA gene sequencing.

Methods: Fecal samples were collected from children with IgE-mediated FA and from sex- and age-matched controls. The V3-V4 variable regions of the 16S rRNA gene of the gut microbiome were profiled using next-generation sequencing (Illumina, USA).

View Article and Find Full Text PDF

Fecal microbiota transplantation for vancomycin-resistant Clostridium innocuum infection in inflammatory bowel disease: A pilot study evaluating safety and clinical and microbiota outcome.

J Microbiol Immunol Infect

March 2025

Chang Gung Microbiota Therapy Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan. Electronic address:

Background: Clostridium innocuum is a vancomycin-resistant pathobiome associated with poor clinical outcomes in inflammatory bowel disease (IBD). In ulcerative colitis (UC), it correlates with reduced remission rates, while in Crohn's disease (CD), it is linked to creeping fat formation and intestinal strictures. Notably, some patients experience refractory or recurrent C.

View Article and Find Full Text PDF

Endoscopic healing in IBD: Still the target to achieve?

Dig Liver Dis

March 2025

Department of Pathophysiology and Organ Transplantation, University of Milan, Milan, Italy; Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy. Electronic address:

Mucosal healing is the mainstream goal of modern treat-to-target strategy as it is associated with a significantly more favorable disease course in IBD patients with either ulcerative colitis or Crohn's disease. Recent advances in endoscopic imaging technologies have overcome the traditional concept of mucosal healing assessed with conventional white light imaging, allowing for multiple levels of endoscopic healing up to the boundaries of molecular and functional evaluation. In this review, we focused on conventional and emerging strategies to assess endoscopic healing in ulcerative colitis and ileocolonic Crohn's disease, examining their pros and cons in real life practice.

View Article and Find Full Text PDF

This review provides an in-depth exploration of the evolving role of immunotherapy in gastrointestinal (GI) cancers, with a particular focus on immune checkpoint inhibitors (ICIs) and their associated predictive biomarkers. We present a detailed analysis of established biomarkers, such as PD-L1, microsatellite instability (MSI), tumor mutational burden (TMB), and the tumor microenvironment (TME), as well as emerging biomarkers, including gut microbiota and Epstein-Barr virus (EBV). The predictive value of these biomarkers in guiding clinical decision-making and optimizing immunotherapy outcomes is thoroughly discussed.

View Article and Find Full Text PDF

Background: Many factors are associated with the development and progression of liver fat and fibrosis; however, genetics and the gut microbiota are representative factors. Moreover, recent studies have indicated a link between host genes and the gut microbiota. This study investigated the effect of patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 (C > G), which has been reported to be most involved in the onset and progression of fatty liver, on liver fat and fibrosis in a cohort study related to gut microbiota in a non-fatty liver population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!