Production and recycling of the cutting edge material of gallium: A review.

Sci Total Environ

Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: March 2025

Gallium, an indispensable scattering element, is driving the development of an array of latest generation functional materials. Due to its exceptionally conductive, fluidic, thermal, flexible, and biocompatible attributes, gallium and its derivatives are increasingly introduced into diverse cutting edge industries. Meanwhile, the aggravated irreconcilable contradiction between the rapid growth of gallium consumption and the severe shortage of gallium resources also brings about big concern regarding its availability for the coming era. In this review, we conducted a comprehensive examination on the global distribution and reserves of gallium which indicates sporadic locations and low concentrations of gallium, highlighting the daunting challenge of extracting gallium. Following that, extensive assessments of gallium production and recovery treatments were presented, ranging from ore mining to high-purity gallium extraction, from major to minor production methods, and from primary gallium extraction to recycling gallium reclamation. Finally, based on evaluating ongoing trends over the field, a forecast of the future gallium production and recycling was given. Potential barriers and their corresponding mitigation strategies were interpreted.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2025.179046DOI Listing

Publication Analysis

Top Keywords

gallium
13
production recycling
8
cutting edge
8
gallium production
8
gallium extraction
8
production
4
recycling cutting
4
edge material
4
material gallium
4
gallium review
4

Similar Publications

While amorphous indium gallium zinc oxide (α-IGZO) thin film transistors (TFTs) are practical alternatives to silicon-based TFTs, their field-effect mobility (∼50 cm/(V s), depending on deposition conditions) remains insufficient to meet the growing demands of high-resolution active-matrix organic light-emitting diode (AMOLED) displays. The need for high-performance oxide TFTs with mobility ≥100 cm/(V s) has become critical to meet the evolving display industry's requirements. This study explored the development of high-mobility hexagonal homologous compound (HC) indium zinc tin oxide (IZTO) TFTs as an alternative to α-IGZO TFTs.

View Article and Find Full Text PDF

Controllable Hydrothermal Synthesis of 1D β-GaO for Solar-Blind Ultraviolet Photodetection.

Nanomaterials (Basel)

March 2025

State Key Laboratory of Digital Medical Engineering, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.

Gallium oxide (GaO), an ultrawide bandgap semiconductor, is an ideal material for solar-blind photodetectors, but challenges such as low responsivity and response speed persist. In this paper, one-dimensional (1D) GaO nanorods were designed to achieve high photodetection performance due to their effective light absorption and light field confinement. Through modulating source concentration, pH value, temperature, and reaction time, 1D β-GaO nanorods were controllably fabricated using a cost-effective hydrothermal method, followed by post-annealing.

View Article and Find Full Text PDF

Production and recycling of the cutting edge material of gallium: A review.

Sci Total Environ

March 2025

Key Laboratory of Cryogenic Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Gallium, an indispensable scattering element, is driving the development of an array of latest generation functional materials. Due to its exceptionally conductive, fluidic, thermal, flexible, and biocompatible attributes, gallium and its derivatives are increasingly introduced into diverse cutting edge industries. Meanwhile, the aggravated irreconcilable contradiction between the rapid growth of gallium consumption and the severe shortage of gallium resources also brings about big concern regarding its availability for the coming era.

View Article and Find Full Text PDF

Recently, interface scattering and low mobility have significantly impeded the performance of two-dimensional (2D) P-type transistors. 2D semiconductor tellurium (Te) has garnered significant interest owing to its unique atomic chain crystal structure, which confers ultrahigh hole mobility. van der Waals heterojunction enhances transistor performance by reducing scattering at the gate-channel interface, attributed to its high-quality interface.

View Article and Find Full Text PDF

Gallium-based liquid metals, when combined with magnetic agents, emerge as intelligent materials with potential applications in soft robotics within biomedical engineering. However, concerns have arisen from the residual presence of liquid metal, raising long-term biological risks. Herein, we propose a containment method that involves the rolling of magnetic liquid-metal droplets in lyophilized powders, resulting in the formation of intact hydrogel coatings upon hydration.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!