A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultrasensitive and multiplex SERS immunoassay for stroke subtype-specific biomarkers based on graphene oxide-supported nanofilms coated by roughened nanoboxes with extensive high-density hotspots. | LitMetric

Ultrasensitive and multiplex SERS immunoassay for stroke subtype-specific biomarkers based on graphene oxide-supported nanofilms coated by roughened nanoboxes with extensive high-density hotspots.

Biosens Bioelectron

The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China. Electronic address:

Published: March 2025

Herein, we fabricate the graphene oxide-supported nanofilms coated by roughened nanoboxes (GO@AuAgRNB) for the ultrasensitive and simultaneous determination of multiple stroke subtype-specific biomarkers. Initially, Au-Ag roughened nanobox (AuAgRNB) with abundant coupling and tip hotspots is prepared by the partial surface passivation strategy. AuAgRNB is uniformly, densely and firmly assembled onto graphene oxide (GO) by metal-sulfur bonds, generating extensive high-density hotspots. Owing to electromagnetic and chemical enhancement, the surface enhanced Raman scattering (SERS) activity of GO@AuAgRNB is greatly improved with the enhancement factor of 5.78 × 10. Combined with magnetic bead, GO@AuAgRNB was employed to develop a SERS-based immunoassay platform for the simultaneous detection of glial fibrillary acidic protein (GFAP) and retinol binding protein 4 (RBP). The platform demonstrates ultra-sensitivity with detection ranges of 0.1 pg/mL-0.1 μg/mL and limits of detection of 0.16 pg/mL for GFAP and 0.10 pg/mL for RBP. Furthermore, the platform provides superior anti-interference properties, accuracy, and capability for simultaneous detection and practical application. In the detection of clinical patient samples, the receiver operating characteristic curve analysis shows that cut-off values (RBP = 13.51 μg/mL and GFAP = 2.07 ng/mL) can reliably differentiate patients with ischaemic and haemorrhagic stroke. Overall, the ultrasensitive and multiplex immunoassay platform based on GO@AuAgRNB demonstrates high potential in the clinical diagnosis of stroke subtypes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bios.2025.117352DOI Listing

Publication Analysis

Top Keywords

ultrasensitive multiplex
8
stroke subtype-specific
8
subtype-specific biomarkers
8
graphene oxide-supported
8
oxide-supported nanofilms
8
nanofilms coated
8
coated roughened
8
roughened nanoboxes
8
extensive high-density
8
high-density hotspots
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!