Cells' ability to sense and respond to mechanical stimuli is fundamental to various biological processes and serves as a crucial biomarker of their physiological and pathological states. Traditional methods for assessing cell mechanical properties, such as atomic force microscopy and micropipette aspiration, are hindered by complex procedures and the risk of cellular damage due to direct contact. Here we introduce a novel non-contact acoustic squeezer that leverages focused interdigital transducers to induce cell deformation through a robust standing surface acoustic wave (SSAW) field. This approach enables the multiparametric quantification of multiple mechanical properties, including elasticity (Young's modulus, stiffness) and viscosity, without requiring labeling or physical contact, providing a comprehensive understanding of the cell mechanical properties. Our acoustic squeezer is capable of generating a maximum squeezing force of 25.70 pN, inducing a deformability of 1.27 ± 0.017. Combined with thin-shell deformation model, the quantized Young's modulus of normal red blood cells (RBCs) is approximately 919.04 ± 55.64 Pa. Furthermore, our method demonstrates that cells treated with the anti-cancer drug (doxorubicin) exhibited reduced deformability, increased Young's modulus and viscosity. Our acoustic squeezer offers a standardized, non-invasive, and highly sensitive approach for characterizing cell mechanical properties, with significant promise for clinical applications in disease diagnosis and drug development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultras.2025.107622 | DOI Listing |
Sci Adv
March 2025
Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China.
Recalcitrant biofilm infections pose a great challenge to human health. Micro- and nanorobots have been used to eliminate biofilm infections in hard-to-reach regions inside the body. However, applying antibiofilm robots under physiological conditions is limited by the conflicting demands of accessibility and driving force.
View Article and Find Full Text PDFLangmuir
March 2025
College of Mining, Guizhou University, Guiyang 550025, PR China.
As shale gas is an unconventional energy source, it is believed to be essential for achieving green resource development and improving the energy supply-demand balance. However, owing to shale's substantial anisotropic properties and various microstructures, its gas flow characteristics and transport mechanisms are exceedingly complex. Therefore, accurately predicting gas permeability evolution in shale pores was considered to be important for energy development.
View Article and Find Full Text PDFPLoS One
March 2025
Medical School of Chinese PLA, Department of Plastic and Reconstructive Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China.
Diabetic wounds have a profound effect on both the physical and psychological health of patients, highlighting the urgent necessity for novel treatment strategies and materials. Macrophages are vital contributors to tissue repair mechanisms. Macrophage conditioned medium contains various proteins and cytokines related to wound healing, indicating its potential to improve recovery from diabetic wound.
View Article and Find Full Text PDFNanoscale
March 2025
School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China.
Raman spectroscopy has demonstrated significant potential in molecular detection, analysis, and identification, particularly when it adopts single-molecule surface-enhanced Raman scattering (SM-SERS) substrates. A recent SM-SERS scheme incorporates two-fold Raman enhancement mechanisms: the electromagnetic enhancement enabled by a plasmonic nanogap hotspot formed from gold sphere nanoparticles sitting on a gold mirror and the chemical enhancement enabled by a two-dimensional material, WS, inserted into the nanogap. In this work we integrate multiple advanced concepts and techniques to achieve remarkable performance improvements of SM-SERS.
View Article and Find Full Text PDFNanomicro Lett
March 2025
Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!