Oxidized protein aggregate lipofuscin impairs cardiomyocyte contractility via late-stage autophagy inhibition.

Redox Biol

Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Potsdam, 14469, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.

Published: February 2025

Aging of the heart is accompanied by impairment of cardiac structure and function. At molecular level, autophagy plays a crucial role in preserving cardiac health. Autophagy maintains cellular homeostasis by facilitating balanced degradation of cytoplasmic components including organelles and misfolded or aggregated proteins. The age-related decline in autophagy favors an accumulation of protein aggregates such as lipofuscin particularly in the heart, which is composed primarily of non-proliferating cells. Therefore, this study investigates whether lipofuscin accumulation contributes to age-related functional decline of primary adult cardiomyocytes isolated from C57BL/6J mice and examines the role of autophagic flux in mediating these effects. Results showed an age-associated reduction in cardiomyocyte contraction amplitude and an increase in autofluorescence, indicating the accumulation of lipofuscin with age. In vitro treatment of adult primary cardiomyocytes with artificial lipofuscin increased autofluorescence and decreased both contraction amplitude and cellular autophagic flux. Induction of autophagy with rapamycin mitigated contractile dysfunction in lipofuscin-treated cardiomyocytes, whereas inhibition of autophagic flux revealed stage-dependent effects. Late-stage autophagy inhibition using chloroquine or concanamycin A reduced cardiomyocyte contraction amplitude, whereas early-stage autophagy inhibition via 3-methyladenine did not affect contraction within 24 h. In conclusion, our results indicate that lipofuscin directly impairs cardiomyocyte function by diminishing late-stage autophagic flux. These findings highlight the essential role of the autophagy-lysosomal system in preserving age-related loss of cardiomyocyte function caused by accumulating protein aggregates.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.redox.2025.103559DOI Listing

Publication Analysis

Top Keywords

autophagic flux
16
autophagy inhibition
12
contraction amplitude
12
impairs cardiomyocyte
8
late-stage autophagy
8
protein aggregates
8
cardiomyocyte contraction
8
cardiomyocyte function
8
autophagy
7
lipofuscin
6

Similar Publications

Ammonia fertilizer, primarily composed of ammonium chloride, is widely used in pond fish farming throughout Asia. Despite the belief that it possesses antiviral properties, the underlying mechanisms remain unclear. Ammonium chloride (NH4Cl) has been demonstrated to act as a potent inhibitor of autophagy, which is used by many fish viruses to promote their proliferation during infection.

View Article and Find Full Text PDF

Oxidized protein aggregate lipofuscin impairs cardiomyocyte contractility via late-stage autophagy inhibition.

Redox Biol

February 2025

Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena-Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; Institute of Nutritional Science, Department of Food Chemistry, University of Potsdam, Potsdam, 14469, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.

Aging of the heart is accompanied by impairment of cardiac structure and function. At molecular level, autophagy plays a crucial role in preserving cardiac health. Autophagy maintains cellular homeostasis by facilitating balanced degradation of cytoplasmic components including organelles and misfolded or aggregated proteins.

View Article and Find Full Text PDF

The biology of GZ17-6.02 alone and more so in combination with either of the standard-of-care agents etoposide or carboplatin killed MYCN overexpressing neuroblastoma (NB) cells is unknown. The methods involved in this study are in-cell immunoblotting, trypan blue exclusion, plasmid and siRNA transfection, assessment of autophagy using a plasmid expressing LC3-GFP-RFP.

View Article and Find Full Text PDF

Cardiac dysfunction is a serious complication of sepsis-induced multiorgan failure in intensive care units and is characterized by an uncontrolled immune response to overwhelming infection. Type 2 innate lymphoid cells (ILC2s), as a part of the innate immune system, play a crucial role in the inflammatory process of heterogeneous cardiac disorders. However, the role of ILC2 in regulating sepsis-induced cardiac dysfunction and its underlying mechanism remain unknown.

View Article and Find Full Text PDF

Dynamic changes in the arrangement of myonuclei and the organization of the sarcoplasmic reticulum are important determinants of myofiber formation and muscle function. To find factors associated with muscle integrity, we perform an siRNA screen and identify SH3KBP1 as a new factor controlling myoblast fusion, myonuclear positioning, and myotube elongation. We find that the N-terminus of SH3KBP1 binds to dynamin-2 while the C-terminus associates with the endoplasmic reticulum through calnexin, which in turn control myonuclei dynamics and ER integrity, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!