An "on-off-on" fluorescent sensor based on Sm:ZnO-NH QDs for hexavalent chromium detection.

Spectrochim Acta A Mol Biomol Spectrosc

Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China. Electronic address:

Published: March 2025

The problems of poor water solubility, poor stability, and poor selectivity encountered in the determination of hexavalent chromium (Cr(VI)) in water using ZnO QDs need to be addressed. In this study, we successfully prepared Sm-doped, -NH-modified Sm:ZnO-NH QDs via the sol-gel method. Sm doping was used to enhance the fluorescence intensity of ZnO QDs, while 3-aminopropyltrietoxysilane (APTEs) capping improved their water solubility and fluorescence stability. The fluorescence of Sm:ZnO-NH quantum dots was quenched after the addition of Cr(VI) due to the internal filtration effect(IFE), and was restored after the addition of ascorbic acid due to the redox reaction between ascorbic acid (AA) and Cr(VI). Leveraging the fluorescence response patterns of the Sm:ZnO-NH QDs system when exposed to Cr(VI) and AA, we developed an ''on-off-on'' fluorescent sensor that can specifically detect Cr(VI) and AA without interference from Cu2 ions. The "on-off-on" fluorescent sensor exhibited a linear response to Cr(VI) concentrations ranging from 0.05 to 1.5 μg/mL, with a limit of detection (LOD) of 6.15 ng/mL. It exhibited excellent selectivity and repeatability. Furthermore, the Sm:ZnO-NH QDs fluorescent sensor was effectively utilized for detecting Cr(VI) in tap water, offering a new method for heavy metal detection via an "on-off-on" fluorescence switching mechanism.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.125998DOI Listing

Publication Analysis

Top Keywords

fluorescent sensor
16
smzno-nh qds
16
"on-off-on" fluorescent
8
hexavalent chromium
8
water solubility
8
zno qds
8
ascorbic acid
8
crvi
7
qds
6
smzno-nh
5

Similar Publications

Surface Grafting of Graphene Flakes with Fluorescent Dyes: A Tailored Functionalization Approach.

Nanomaterials (Basel)

February 2025

NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy.

The controlled functionalization of graphene is critical for tuning and enhancing its properties, thereby expanding its potential applications. Covalent functionalization offers a deeper tuning of the geometric and electronic structure of graphene compared to non-covalent methods; however, the existing techniques involve side reactions and spatially uncontrolled functionalization, pushing research toward more selective and controlled methods. A promising approach is 1,3-dipolar cycloaddition, successfully utilized with carbon nanotubes.

View Article and Find Full Text PDF

An "on-off-on" fluorescent sensor based on Sm:ZnO-NH QDs for hexavalent chromium detection.

Spectrochim Acta A Mol Biomol Spectrosc

March 2025

Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou City 545006, Guangxi, PR China; Province and Ministry Co-Sponsored Collaborative Innovation Center of Sugarcane and Sugar Industry, Nanning 530004 Guangxi, PR China. Electronic address:

The problems of poor water solubility, poor stability, and poor selectivity encountered in the determination of hexavalent chromium (Cr(VI)) in water using ZnO QDs need to be addressed. In this study, we successfully prepared Sm-doped, -NH-modified Sm:ZnO-NH QDs via the sol-gel method. Sm doping was used to enhance the fluorescence intensity of ZnO QDs, while 3-aminopropyltrietoxysilane (APTEs) capping improved their water solubility and fluorescence stability.

View Article and Find Full Text PDF

Developing analytical methods for simultaneous detection of multiple antibiotic residues is crucial for environmental protection and human health. In this study, a dual lanthanide fluorescence probe (GDP-Eu-Tb) based on nucleotides has been designed. The addition of quinolone antibiotics (QNs) quench the Eu fluorescence signal through the inner filter effect (IFE) and exhibit characteristic peaks, enabling ratio fluorescence detection of levofloxacin (LVLX), gatifloxacin (GTLX), and moxifloxacin (MXLX).

View Article and Find Full Text PDF

Glutamate is an important excitatory neurotransmitter, while GABA is an inhibitory neurotransmitter. However, direct and accurate visualization of these important signaling agents by a chemical sensor is still very challenging. Here, a novel coumarin-based fluorescent sensor for the selective labeling and imaging of amino acids in neurons has been developed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!