Phenol is one of the omnipresent pollutants in the environment, frequently detected in ambient air, water, soil, snow, and ice. Due to its low aqueous reactivity and inability to undergo direct photolysis under typical tropospheric conditions, phenol can be widely distributed and accumulated in the environment for an extended period of time. However, the reactivity of phenol can be influenced by a number of factors, including temperature, pH, and phase transitions. The present study examines the impact of the ice matrix and ice surface on the photophysical properties of phenol via UV-VIS, fluorescence, and Raman spectroscopies. We demonstrate that the freezing of an aqueous solution results in the vitrification or crystallization of the freeze-concentrated solution. The latter case is accompanied by a bathochromic shift of the absorption spectrum above 290 nm. The most pronounced red-shifts were obtained for deprotonated and crystalline samples, which suggests that direct photolysis under tropospheric conditions would be significantly enhanced in these cases. The study further demonstrates the difference in the molecular arrangement in freeze-concentrated solutions as compared to the surface of Ih ice.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2025.125948 | DOI Listing |
Langmuir
March 2025
Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
Aryl diazonium electrografting is a versatile methodology for the functionalization of electrode surfaces, yet its usage has been hampered by both the short lifespan of aryl diazonium cations in aqueous solution and the harsh conditions required to generate them . This can make accessing complicated aryl diazonium cations and derivatized surfaces thereof difficult. The usage of triazabutadienes has the potential to address many of these issues as triazabutadienes are stable enough to endure multiple-step chemical syntheses and can persist for several hours in aqueous solution, yet upon UV exposure rapidly release aryl diazonium cations under mild conditions (i.
View Article and Find Full Text PDFLangmuir
March 2025
Jiangxi Province Key Laboratory of Light Alloy, School of Advanced Manufacturing, Nanchang University, Nanchang 330031, P.R. China.
Herein, a superhydrophobic surface was designed and fabricated based on the "lotus effect" construction mechanism. The zeolitic imidazolate framework (ZIF-90) micro-nanoparticles were initially synthesized via a one-pot method, combined with long-chain stearic acid (STA), and subsequently embedded in polyvinyl butyral (PVB) to form a superhydrophobic surface at room temperature. The superhydrophobic surface demonstrated mechanical stability and retained its superhydrophobicity with a water contact angle (CA) greater than 150°, even at a wear distance of 400 cm.
View Article and Find Full Text PDFSci Adv
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, P.R. China.
Directed evolution, enzyme design, and effective immobilization have been used to improve the catalytic activity. Dynamic polymers offer a promising platform to improve enzyme activity in aqueous solutions. Here, amphiphilic dynamers and lipase self-assemble into nanoparticles of 150- to 600-nanometer diameter, showing remarkable threefold enhancement in catalytic activity.
View Article and Find Full Text PDFAcc Chem Res
March 2025
Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.
ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.
View Article and Find Full Text PDFNanomaterials (Basel)
February 2025
Department of Chemical Engineering Materials Environment, Sapienza University of Rome, via Eudossiana 18, 00184 Rome, Italy.
The growing amount of carbon dioxide (CO) in the atmosphere significantly contributes to global warming and climate change. This study focuses on the use of aqueous potassium carbonate (KCO) solutions as a solvent for CO absorption, emphasizing the role of titanium dioxide (TiO) nanoparticles in enhancing performance. A detailed understanding of reaction kinetics and the dynamic behavior of the absorber is crucial for optimizing the process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!