A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

DFT investigation of 5-fluorouracil tautomerism and non-covalent interactions with PLGA nanoparticles for enhanced drug delivery and sensing. | LitMetric

This study investigates the non-covalent interactions between both the free and tautomeric forms of 5-fluorouracil (5-FU) and poly(lactic-co-glycolic acid) (PLGA) nanoparticles through density functional dispersion correction (DFT-D) at the B3LYP-D level in a dichloromethane (DCM) and water environments. Our results indicate that the non-covalent interactions formed between the carbonyl and amide groups of the free form of 5-FU and the carboxyl group of PLGA facilitate a rapid initial release of the drug, aligning with experimental findings. The calculated binding energies for 5-FU in its keto-enol (-0.80 eV) and di-enol forms (-0.74 eV) demonstrate exothermic processes, highlighting the enhanced drug loading capacity of the tautomeric forms compared to the free form (-0.627 eV). NBO analysis indicates a charge transfer of 0.061e in the keto-enol form, compared to 0.053e in the free form. Infrared (IR) spectra show shifts in the N-H and CO stretching frequencies, suggesting the formation of hydrogen bonds between 5-FU and the carbonyl groups of PLGA. Time-dependent DFT calculations revealed significant shifts in the optical properties of 5-FU upon interaction with the PLGA carrier. Adsorption of 5-FU in its most stable configuration resulted in a red shift to 253.56 nm, while the PLGA carrier exhibited a blue shift to 213.08 nm. Analysis of oscillator strengths indicated an increased adsorption intensity for the keto-enol form of 5-FU, suggesting a hypochromic effect. Total density of states (TDOS) analysis demonstrates that 5-FU notably influences the HOMO and LUMO levels, with PLGA nanoparticles exhibiting higher sensitivity (state I: 30.07 %) to 5-FU in one state compared to another (state VII: 28.99 %), likely due to variations in energy gaps. These findings indicate that PLGA nanoparticles possess significant potential as both drug carriers and sensors for 5-FU detection in solvent phases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2025.125945DOI Listing

Publication Analysis

Top Keywords

plga nanoparticles
16
non-covalent interactions
12
free form
12
5-fu
10
plga
8
enhanced drug
8
tautomeric forms
8
form 5-fu
8
keto-enol form
8
plga carrier
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!