A novel framework for tracking hydrological processes and identifying key factors in mountain-lowland mixed catchments: Implications of forty years of modeling for water management.

Water Res

State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China. Electronic address:

Published: March 2025

Quantitative analysis of runoff, total suspended solids, and total nitrogen dynamics, along with the identification of key factors within catchments, is essential for accurately addressing issues related to turbid and polluted water. Nevertheless, their implementation encounters significant challenges when applied to a mixed catchment containing mountain areas and lowland polder regions, due to the highly heterogeneous hydrological behaviors and consequently the lack of an appropriate approach. Faced with this problem, this study developed a framework by coupling the Soil and Water Assessment Tool (SWAT) and improved Polder Hydrology and Nitrogen modelling System (PHNS), and Random Forest analysis method to track the spatio-temporal changes in runoff, total suspended solids, and total nitrogen loading and identify their environmental determinants in a representative mountain-lowland mixed catchment, southeastern China. The coupled model performed very well for runoff (R≥0.90) and water quality variables (total suspended solids: R≥0.88; total nitrogen: R≥0.73) in both the calibration and validation periods, and showed improvements compared with standalone SWAT model. Forty years' modelling results indicated that the upstream subbasins 15 (32.86 tonnes/ha/yr), 14 (33.96 tonnes/ha/yr), and 11 (32.32 tonnes/ha/yr) were the critical source areas for total suspended solids and total nitrogen. However, the downstream polder subbasins functioned as a sink for runoff, total suspended solids, and total nitrogen, exporting lower loading intensities. Precipitation and the proportion of slope of 0 to 30° were identified as the critical factors influencing runoff, total suspended solids, and total nitrogen. The proportion of water area also significantly, negatively influenced runoff and total suspended solids. This study provided a feasible method to investigate runoff, total suspended solids, and total nitrogen processes and their environmental factors' impact, and thus identifying the critical source areas and targeted measures to control the non-point source pollution of mountain-lowland mixed catchments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2025.123424DOI Listing

Publication Analysis

Top Keywords

total suspended
32
suspended solids
32
total nitrogen
28
runoff total
24
solids total
24
total
15
mountain-lowland mixed
12
key factors
8
mixed catchments
8
suspended
8

Similar Publications

Water pollution control agencies worldwide face the complex challenge of ensuring the efficient operation of sewage treatment plants (STPs) to protect water bodies receiving their effluent as well as for reuse. However, evaluating the performance of these plants is difficult due to multiple criteria involved. Further, while previous studies have focused on evaluating the efficiency of individual plants, it remains unclear how the effluent quality of STPs affect the water quality of receiving bodies without relying on the complex simulation-optimization models (such as waste load allocation) to understand the cause-and-effect relationships.

View Article and Find Full Text PDF

A novel framework for tracking hydrological processes and identifying key factors in mountain-lowland mixed catchments: Implications of forty years of modeling for water management.

Water Res

March 2025

State Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China; Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, PR China. Electronic address:

Quantitative analysis of runoff, total suspended solids, and total nitrogen dynamics, along with the identification of key factors within catchments, is essential for accurately addressing issues related to turbid and polluted water. Nevertheless, their implementation encounters significant challenges when applied to a mixed catchment containing mountain areas and lowland polder regions, due to the highly heterogeneous hydrological behaviors and consequently the lack of an appropriate approach. Faced with this problem, this study developed a framework by coupling the Soil and Water Assessment Tool (SWAT) and improved Polder Hydrology and Nitrogen modelling System (PHNS), and Random Forest analysis method to track the spatio-temporal changes in runoff, total suspended solids, and total nitrogen loading and identify their environmental determinants in a representative mountain-lowland mixed catchment, southeastern China.

View Article and Find Full Text PDF

Sesuvium portulacastrum L. is a halophytic plant species used for sand-dune fixation, desalination, and phytoremediation along coastal regions. This study investigates the potential of S.

View Article and Find Full Text PDF

Elevated Cerebrospinal Fluid Total Tau in Niemann-Pick Disease Type C1: Correlation With Clinical Severity and Response to Therapeutic Interventions.

J Inherit Metab Dis

March 2025

Section on Molecular Dysmorphology, Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.

Niemann-Pick disease, type C1 (NPC1) is an inborn error of intracellular cholesterol transport. Impaired function of NPC1 leads to endolysosomal accumulation of unesterified cholesterol, which results in progressive neurodegeneration. Although the age of onset is variable, classical NPC1 is a pediatric disease.

View Article and Find Full Text PDF

In US coal mines, the continuous personal dust monitor (CPDM) is frequently used to determine miners' exposure to respirable dust. Capabilities to analyze the respirable crystalline silica (RCS) content of that dust are needed, but the CPDM sample collection substrate ("stub") interferes with direct analysis. To overcome this challenge, a three-step method is proposed to recover the dust from the stub, deposit the dust on a polyvinyl chloride (PVC) filter, and analyze the recovered dust by Fourier Transform Infrared Spectroscopy (FTIR) to determine the quartz content (as a proxy for RCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!