Hypergolic ionic liquids (HILs) represent a critical pool of reactive ionic liquids which ignite spontaneously in absence of oxygen when mixed with an oxidizer such as white fuming nitric acid (WFNA, HNO3) or hydrogen peroxide (H2O2). These HILs have emerged as greener alternative to the toxic hydrazine family of fuels for operations in space under anaerobic conditions. Here, we report on the unusual atmospheric ignition chemistry of the 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH])-H2O2 bipropellant while comparing with the parent hypergolic reaction by exploiting a chirped-pulse triggered droplet merging technique in an ultrasonic levitation apparatus under controlled environment. Significant enhancements of the ignition performance and noticeable differences of product distribution in the simulated atmosphere containing molecular oxygen are revealed. The critical mechanistic role of the surrounding oxygen plausibly involves the reaction with a suitable intermediate (iminomethyl)boronic acid, [(HO)2BCH=NH] formed in the initial reactions of the IL and H2O2 which eventually generates catalytic hydroperoxyl (•HO2) and hydroxyl (•OH) radicals - further promoting the ignition reaction. This systematic case study conceptually demonstrates that under atmospheric conditions, well-defined HIL - oxidizer combinations provide excellent ignition performance and effectively be used as universal fuel both in space and in the terrestrial atmosphere simplifying the multistage propulsion system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202500593 | DOI Listing |
Chemistry
March 2025
University of Hawaii at Manoa, Chemistry, 2545 McCarthy Mall, 96822, Honolulu, UNITED STATES OF AMERICA.
Hypergolic ionic liquids (HILs) represent a critical pool of reactive ionic liquids which ignite spontaneously in absence of oxygen when mixed with an oxidizer such as white fuming nitric acid (WFNA, HNO3) or hydrogen peroxide (H2O2). These HILs have emerged as greener alternative to the toxic hydrazine family of fuels for operations in space under anaerobic conditions. Here, we report on the unusual atmospheric ignition chemistry of the 1-ethyl-3-methylimidazolium cyanoborohydride ([EMIM][CBH])-H2O2 bipropellant while comparing with the parent hypergolic reaction by exploiting a chirped-pulse triggered droplet merging technique in an ultrasonic levitation apparatus under controlled environment.
View Article and Find Full Text PDFLab Chip
March 2025
Department of Chemical and Biomolecular Engineering, New York University, NY 11201, USA.
Atmospheric pressure plasma conversion of methane is usually addressed in gas-only systems, such as dry reforming of methane. Introducing a liquid in such a system enables direct utilization of plasma-produced radicals, such as methyl (CH), as a reactant in the liquid. Methylation of organic liquids by this technique can lead to the sustainable production of high-value products.
View Article and Find Full Text PDFSci Adv
February 2025
Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
Wildfires are favored by hot, dry, windy, rainless conditions-this knowledge about fire weather informs both short-term forecast and long-term prediction of wildfire activity. Yet, wildfires rely on the availability of ignition and fuel, which are underrepresented in fire forecast and prediction practices. By analyzing satellite measurements and atmospheric reanalysis, here we show that near-surface weather only partially captures wildfire occurrence and intensity across the daily to seasonal timescales.
View Article and Find Full Text PDFEnviron Sci Process Impacts
February 2025
Wolfson Atmospheric Chemistry Laboratories, University of York, Heslington, York, YO10 5DD, UK.
Hydrogen internal combustion engines offer a near-term decarbonisation pathway for hard to electrify sectors such as non-road mobile machinery (NRMM). However, few hydrogen-specific engines have ever been developed with the twin-goals of maximising low carbon energy efficiency and delivering air quality co-benefits. We present analyses of dynamometer-derived nitrogen oxides (NO) tailpipe emissions from four variants of a ∼55 kW four-cylinder port fuelled injection spark ignition hydrogen internal combustion engine (H2ICE) suitable for a range of uses within the NRMM industry.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, Texas 77843, USA.
Ignition of the lubricating fluid in a mechanical system is a highly undesirable and unsafe condition that can arise from the elevated temperatures and pressures to which the lubricant is subjected. It is therefore important to understand the fundamental chemistry behind its ignition to predict and prevent this condition. Lubricating oils, particularly those with a mineral oil base, are very complex mixtures of thousands of hydrocarbons.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!