IntroductionGlyphosate (GLP) is one of the most widely used herbicides in the world. However, its underlying effects on the liver remain unclear. This study aims to investigate the toxic effects and the gut microbiome- and serum metabolite-related mechanisms of GLP on the liver in mice.Methods16S rDNA sequencing and UPLC-Q-TOF-MS/MS were used to investigate the mechanisms of GLP toxicity in mice administered with 0, 50, 250 and 500 mg/kg/day GLP for 30 days.ResultsGLP induced hepatocyte edema and ballooning as well as inflammatory cell infiltration. Exposure to GLP resulted in increased levels of serum ALT, TBIL, DBIL, and GLU. Microbiota analysis at the phylum level demonstrated that the proportions of Patescibacteria decreased in the GLP-treated group. The genus-level analysis identified 11 different genera, with eight decreased and three increased in the GLP-exposed group. Metabolomics analysis of serum showed 42 differential metabolites between the GLP and control groups. The metabolic pathway enrichment analysis revealed that the pentose phosphate pathway (PPP) and pyrimidine metabolism were significantly activated. Spearman analysis showed that the changes in the differential metabolites of the PPP and pyrimidine metabolism and gut microbiota were strongly associated with the biochemical index.DiscussionIn conclusion, GLP exposure induces hepatic injury through alterations in the gut microbiome and metabolic pathways, particularly by activating the pentose phosphate pathway and pyrimidine metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09603271251326877 | DOI Listing |
Sci Adv
March 2025
School of Pharmacy, Lanzhou University, Lanzhou, Gansu 730000, China.
The emergence and rapid spread of multidrug-resistant strains pose a great challenge to the quality and safety of agricultural products and the efficient use of pesticides. Previously unidentified fungicides and targets are urgently needed to combat -associated infections as alternative therapeutic options. In this study, the promising compound Z24 demonstrated efficacy against all tested plant pathogenic fungi.
View Article and Find Full Text PDFElife
March 2025
Department of Biology, Indian Institute of Science Education and Research, Pune, India.
Evolution of gene expression frequently drives antibiotic resistance in bacteria. We had previously (Patel and Matange, , 2021) shown that, in , mutations at the locus were beneficial under trimethoprim exposure and led to overexpression of dihydrofolate reductase (DHFR), encoded by the gene. Here, we show that DHFR levels are further enhanced by spontaneous duplication of a genomic segment encompassing and spanning hundreds of kilobases.
View Article and Find Full Text PDFNucleic Acids Res
February 2025
Department of Clinical Laboratory of Sir Run-Run Shaw Hospital, and School of Public Health, Zhejiang University School of Medicine, Hangzhou 310058, China.
3-Methylcytidine (m3C), a prevalent modification of transfer RNAs (tRNAs), was recently identified in eukaryotic messenger RNAs (mRNAs). However, its precise distribution and formation mechanisms in mRNAs remain elusive. Here, we develop a novel approach, m3C immunoprecipitation and sequencing (m3C-IP-seq), utilizing antibody enrichment to profile the m3C methylome at single-nucleotide resolution.
View Article and Find Full Text PDFEndokrynol Pol
March 2025
Department of Clinical Laboratory, the First Affiliated Hospital of Guangxi Medical University, Key Laboratory of Clinical Laboratory Medicine of Guangxi Department of Education, Nanning, Guangxi, China.
Introduction: Thiamine-responsive megaloblastic anaemia syndrome (TRMA) is a rare genetic disease caused by mutations in the SLC19A2 gene that encodes thiamine transporter 1 (THTR-1). The common manifestations are diabetes, anaemia, and deafness. The pathogenic mechanism has not yet been clarified.
View Article and Find Full Text PDFJ Neuroinflammation
March 2025
Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
Neuropathic pain, a debilitating nerve injury-induced condition, remains a significant clinical challenge. This study evaluates the effect of histone deacetylase 6 (HDAC6) inhibition in a spared nerve injury (SNI) mouse model. Systemic administration of the selective HDAC6 inhibitor ACY-1215 (20 mg/kg/day, 14 days), alleviated SNI-induced pain in mice of both sexes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!