The gold standard therapy for peripheral nerve injuries involves surgical repair, which is invasive and leads to major variations in therapeutic outcomes. Because of this, smaller injuries often go untreated. However, alternative, noninvasive routes of administration are currently unviable due to the presence of the blood-nerve barrier (BNB), which prevents passage of small molecules from the blood into the endoneurium and the nerve. This paper demonstrates that ligands on the surface of nanoparticles, called polymersomes, can enable delivery to the nerve through noninvasive intramuscular injections. Polymersomes made from polyethylene glycol (PEG)--polylactic acid (PLA) were conjugated with either apolipoprotein E (ApoE) or rabies virus glycoprotein-based peptide RVG29 (RVG) and loaded with near-infrared dye, AlexaFluor647. ApoE was used to target receptors upregulated in post-injury inflammation, while RVG targets neural-specific receptors. Untagged, ApoE-tagged, and RVG-tagged polymersomes were injected at 100 mM either intranerve (IN) or intramuscular (IM) into Sprague-Dawley rats post sciatic nerve injury. The addition of the ApoE and RVG tags enabled increased AlexaFluor647 fluorescence in the injury site at 1 h post IN injection compared to the untagged polymersome control. However, only the RVG-tagged polymersomes increased the AlexaFluor647 fluorescence after IM injection. Ex vivo analysis of sciatic nerves demonstrated that ApoE-tagged polymersomes enabled the greatest retention of AlexaFluor647 regardless of the injection route. This led us to conclude that using ApoE to target inflammation enabled the greatest retention of polymersome-delivered payloads while using RVG to target neural cells more specifically enabled the penetration of polymersome-delivered payloads. Observations were confirmed by calculating the area under the curve pharmacokinetic parameters and the use of a two-compartment pharmacokinetic model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.bioconjchem.5c00072 | DOI Listing |
Bioconjug Chem
March 2025
Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, South Carolina 29634, United States.
The gold standard therapy for peripheral nerve injuries involves surgical repair, which is invasive and leads to major variations in therapeutic outcomes. Because of this, smaller injuries often go untreated. However, alternative, noninvasive routes of administration are currently unviable due to the presence of the blood-nerve barrier (BNB), which prevents passage of small molecules from the blood into the endoneurium and the nerve.
View Article and Find Full Text PDFJ Control Release
February 2025
State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Tianjin Institutes of Health Science, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China. Electronic address:
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) pathway has been recognized as a promising target for cancer immunotherapy. Although various STING agonists have been developed, their clinical applications are still severely impeded by various issues, such as non-specific accumulation, adverse effects, rapid clearance, etc. In recent years, the emergence of nanomaterials has profoundly revolutionized STING agonists delivery, which promote tumor-targeted delivery, boost the immunotherapeutic effects and reduce systemic toxicity of STING agonists.
View Article and Find Full Text PDFAdv Sci (Weinh)
February 2025
Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany.
Cell membranes play a key role in bottom-up synthetic biology, as they enable interaction control, transport, and other essential functions. These ultra-thin, flexible, yet stable structures form through the self-assembly of lipids and proteins. While liposomes are common mimics, their synthetic membranes often fail to replicate natural properties due to poor structural control.
View Article and Find Full Text PDFRSC Adv
February 2025
Department of Earth and Planetary Sciences and Harvard Origins of Life Initiative, Harvard University Cambridge MA 02138-1204 USA
Readiness and the ability to functionalize are the fundamental features of natural living systems. Understanding the chemical roots of functionalization is a basic quest for the generation of new materials in the laboratory and chemistry-based natural-life-mimicking artificial or synthetic living systems. Using polymerization-induced self-assembly (PISA) and starting from a homogeneous aqueous blend of a few strictly non-biochemical compounds, it is possible to create amphiphiles that can self-boot into submicron supramolecular objects (micelles).
View Article and Find Full Text PDFACS Nano
February 2025
Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!