Detecting Changes in Singlet Oxygen and Viscosity during Apoptosis-Ferroptosis Mediated Photodynamic Therapy and Establishing Visual Imaging of Fatty Liver.

ACS Sens

Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.

Published: March 2025

Cancer is a serious global health threat, and photodynamic therapy (PDT) is an effective treatment method for cancer. This therapy works by generating a large amount of singlet oxygen (O) under the influence of oxygen and light, which induces apoptosis in tumor cells, leading to their destruction. However, the resistance of cells to apoptosis limits the development of PDT, and thus the combination of ferroptosis and apoptosis provides a new perspective for PDT. During PDT and ferroptosis, the levels of O and the microenvironment (viscosity) within cells often change. To address this, this study developed a novel fluorescent probe, , based on the TICT-ICT effect, capable of monitoring changes in O and viscosity during PDT. The probe exhibits excellent selectivity, high sensitivity, and a low LOD (0.38 μM), and has been successfully applied for bioimaging in HepG2, HeLa, and MCF-7 cells, as well as for monitoring viscosity and O levels in zebrafish. Most importantly, also enables the visualization of the diagnosis of fatty liver disease (both alcoholic and nonalcoholic).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c03364DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
8
photodynamic therapy
8
fatty liver
8
pdt
5
detecting changes
4
changes singlet
4
viscosity
4
oxygen viscosity
4
viscosity apoptosis-ferroptosis
4
apoptosis-ferroptosis mediated
4

Similar Publications

Photodynamic therapy (PDT) has been demonstrated to be an effective tool for cancer treatment. Seeking organelle-targeting photosensitizers (PSs) with robust reactive oxygen species (ROS) production is extremely in demand. Herein, we propose an aggregation-induced photosensitization strategy for effective PDT with osmium complexes.

View Article and Find Full Text PDF

Nanozymes possess the advantages of high stability, adjustable catalytic activity and simple preparation processes, which position them as a promising alternative to natural enzymes. In this work, an oxidase-like nanozyme has been prepared by loading mixed valence manganese oxides (MnO) on defective PCN-224 MOFs (dPCN). Dodecanoic acid was utilized to introduce abundant mesoporous defects into the dPCN, allowing manganese oxide to grow in situ on the surface and within the pores.

View Article and Find Full Text PDF

Singlet oxygen (O) is the main active ingredient in photodynamic therapy (PDT). However, an excess O can cause unnecessary toxicity. Therefore, it is of great importance to develop reliable and sensitive methods or probes for detecting O in biological systems.

View Article and Find Full Text PDF

Integrating energy donor and acceptor chromophores as ligands within one MOF for advanced artificial photosynthesis is of great interest but appears to be a major challenge. Herein, via a simple one-pot synthetic strategy, an energy acceptor porphyrin ligand 5,15-di(p-benzoato)porphyrin (HDPBP) was successfully integrated into an energy donor 1,4-naphthalenedicarboxylic acid (HNDC)-based MOF (UiO-66-NDC) to construct a mixed-ligand MOF, donated as UiO-66-NDC-HDPBP. Benefiting from the ample overlap between the emission spectrum of HNDC and the absorption spectrum of HDPBP, an efficient energy transfer (EnT) process from the donor HNDC to the acceptor HDPBP within UiO-66-NDC-HDPBP can occur and be captured by time-resolved spectroscopy.

View Article and Find Full Text PDF

A novel layered porous Fe, Cu dual-loading biochar heterogeneous catalyst to guided non-free radical pathway for peroxymonosulfate activation.

J Colloid Interface Sci

March 2025

Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao 266590, China; College of Geography and Environment, Shandong Normal University, Jinan 250358, China. Electronic address:

Engineering active sites on catalyst surface to enhance selective oxidation pathways in advanced oxidation processes (AOPs) is key to the efficient removal of pollutants. In this work, a method of loading bimetallic ions and simultaneously activating the surface of swine manure biochar using cetyltrimethylammonium bromide (CTAB) was developed. By applying SiO templating method to increase the surface area and pore size of the catalyst, this study prepared a copper-iron-loaded layered porous catalyst (CFBC-0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!