The abuse of chlorpyrifos (CPF), an organophosphorus pesticide, poses significant health risks to humans. Therefore, rapid and accurate detection of residual CPF is crucial to human health due to its high risk in trace amounts. Herein, we developed a simple aptasensor that combines a DNA hydrogel-based self-driven capillary with nicking enzyme-mediated amplification (NEMA), in which the NEMA is triggered through the interaction of the aptamer with CPF, and then amplified to produce a large number of single-stranded DNA that can destroy the three-dimensional structure of the DNA hydrogel. Due to the different degrees of collapse of the hydrogel membrane structure, different amounts of liquid are adsorbed into the capillary under the action of surface tension, thus realizing the naked eye detection of CPF. Under optimal conditions, the DNA hydrogel-based self-actuated capillary aptasensor can sensitively detect chlorpyrifos in the concentration range of 1 ng/L to 1 mg/L, with a detection limit of 1.73 pg/L. The advantages of the aptasensor are simple conditions, high sensitivity, and a large detection concentration range, and only a thermostat and simple operation are needed to achieve its excellent analytical performance. In addition, the developed self-actuated capillary aptasensor was successfully applied for the determination of CPF in apple, grape, cabbage, and peanut kernel.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c02997 | DOI Listing |
ACS Sens
March 2025
State Key Laboratory of Food Science and Resources, School of Food Science and Technology, International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
The abuse of chlorpyrifos (CPF), an organophosphorus pesticide, poses significant health risks to humans. Therefore, rapid and accurate detection of residual CPF is crucial to human health due to its high risk in trace amounts. Herein, we developed a simple aptasensor that combines a DNA hydrogel-based self-driven capillary with nicking enzyme-mediated amplification (NEMA), in which the NEMA is triggered through the interaction of the aptamer with CPF, and then amplified to produce a large number of single-stranded DNA that can destroy the three-dimensional structure of the DNA hydrogel.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
School of Biomedical Engineering, Tsinghua University, Beijing, 100084, China; National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
Accurate and sensitive detection of single nucleotide variants (SNVs) is paramount for cancer diagnosis and treatment. The CRISPR/Cas12a system shows promise for SNV detection due to its high sensitivity and single-base specificity. However, most CRISPR/Cas12a-based methods rely on F/Q-labeled single-stranded DNA (ssDNA) reporters, which are susceptible to fluorescence fluctuations, thereby reducing accuracy.
View Article and Find Full Text PDFCell Syst
December 2024
Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA. Electronic address:
Anal Chim Acta
January 2025
The Quzhou Affiliated Hospital of Wenzhon Medical University, Quzhou People's Hospital, Quzhou City, Zhejiang Province, China. Electronic address:
Adv Sci (Weinh)
November 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
Direct in situ imaging of nucleic acids on biological samples is advantageous for rapid analysis without DNA extraction. However, traditional nucleic acid amplification in aqueous solutions tends to lose spatial information because of the high mobility of molecules. Similar to a cellular matrix, hydrogels with biomimetic 3D nanoconfined spaces can limit the free diffusion of nucleic acids, thereby allowing for ultrafast in situ enzymatic reactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!