The application of N-heterocyclic carbenes (NHCs) as versatile anchors for planar surface modifications has been well documented over the past decade. Despite its fundamental importance to the formation of self-assembled NHC monolayers on surfaces, the microscopic mechanism behind the mobility of NHCs has primarily been explored through theoretical studies; an atomic-level experimental understanding of NHC motion on surfaces remains elusive. Here, we combine tip-enhanced Raman spectroscopy (TERS) and scanning tunneling microscopy (STM) to investigate the mobility of a model NHC on Ag(111). Two distinct molecular behaviors are observed, depending on substrate preparation. Room-temperature deposition leads to diffusing NHC-Ag adatom complexes exhibiting a ballbot-like motion, chemically identified by TERS through their spectroscopic fingerprint. By contrast, NHCs deposited at low temperature are stabilized on Ag(111) as isolated single molecules directly bound to the substrate. Significantly, a desorption/readsorption scenario is suggested for the displacement of NHCs by moving otherwise immobile single NHCs deposited at low temperature via STM manipulation, with their trajectory traced to atomic precision. This study provides chemical and atomic-level insights into the mobility of NHCs, which will advance the understanding of the fundamental properties of NHC-based surface modifications at the spatial limit.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.4c14363DOI Listing

Publication Analysis

Top Keywords

n-heterocyclic carbenes
8
surface modifications
8
mobility nhcs
8
nhcs deposited
8
deposited low
8
low temperature
8
nhcs
6
optical spectroscopic
4
spectroscopic probing
4
probing atomic
4

Similar Publications

N-Heterocyclic carbenes are highly effective ligands for anchoring functional organic molecules to metal surfaces and nanoparticles, facilitating the formation of self-assembled monolayers. However, their adsorption on surface is difficult to predict and control, and there is an ongoing debate on the geometry of NHC derivatives on gold surfaces and on the role of gold adatoms. We present two single molecules based on a benzimidazole NHC, one equipped with a thiophene substituent, and the other ending with a Br atom.

View Article and Find Full Text PDF

The application of N-heterocyclic carbenes (NHCs) as versatile anchors for planar surface modifications has been well documented over the past decade. Despite its fundamental importance to the formation of self-assembled NHC monolayers on surfaces, the microscopic mechanism behind the mobility of NHCs has primarily been explored through theoretical studies; an atomic-level experimental understanding of NHC motion on surfaces remains elusive. Here, we combine tip-enhanced Raman spectroscopy (TERS) and scanning tunneling microscopy (STM) to investigate the mobility of a model NHC on Ag(111).

View Article and Find Full Text PDF

Photocatalytic CO2 Reduction with Imidazolium-based Ionic Liquids.

ChemSusChem

March 2025

TU Wien: Technische Universitat Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 163, 1060, Vienna, AUSTRIA.

The growing urgency of addressing climate change caused by greenhouse gas emissions and dwindling fossil fuel supplies has heightened the need for effective strategies to capture and utilize carbon dioxide. Photocatalytic CO2 conversion, inspired by natural photosynthesis, presents a viable approach for transforming CO2 into useful C1-C3 chemical intermediates for industrial purposes. However, the inherent stability of CO2 and the competing hydrogen evolution reaction (HER) introduce significant obstacles.

View Article and Find Full Text PDF

The iridium(I) complexes [IrBr(cod)(κC-tBuImCH2PyCH2NRR')] (NRR' = NEt2, NHtBu) have been prepared by reaction of the corresponding functionalized imidazolium salt with the appropriate dinuclear compound [Ir(µ-OR)(cod)]2 (R = OMe, OEt). These compounds react with H2(g) (5 bar) to afford the pincer iridium(III) dihydrido complexes [IrBrH2(κ3C,N,N'-tBuImCH2PyCH2NRR')] in good yields. The complexes [IrBr(cod)(κC-tBuImCH2PyCH2NRR')] efficiently catalyzed the β-alkylation of a series of secondary alcohols and the N-alkylation of a range of aniline derivatives with primary alcohols, with good selectivities for the β-alkylated alcohol and monoalkylated secondary amine products, respectively, at low catalyst loading, typically 0.

View Article and Find Full Text PDF

Organocatalyzed direct and asymmetric functionalization of benzylic C(sp3)-H bond is attractive yet challenging. Herein, we report the enantioselective acylation of benzylic C(sp3)-H bond via a cooperative photoredox and N-heterocyclic carbene (NHC) catalysis, affording the corresponding chiral α-aryl ketones in moderate to good yields with good to excellent enantioselectivities (up to 99:1 er). The rational design of novel NHCs guided by initial evaluation of available catalysts and their application promote the asymmetric transformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!