A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Efficient Photothermoelectric Conversion of CSS@BP/BiTe Array for Innovative Aircraft Attitude Recognition. | LitMetric

Efficient Photothermoelectric Conversion of CSS@BP/BiTe Array for Innovative Aircraft Attitude Recognition.

Adv Sci (Weinh)

MOE Key Laboratory of Materials Physics and Chemistry under Extraordinary Conditions & Shaanxi Provincial Key Laboratory of Condensed Matter Structure and Properties, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710072, P. R. China.

Published: March 2025

The realization of fast, simple and efficient flight attitude recognition is crucial for flight safety and control stability, but still faces challenges in new materials and technologies. Herein, a chloroplast-like selenium-doped copper sulfide@black phosphorus (CSS@BP) composite material is prepared by ultrasonic chemical synthesis using BP nanosheets to effectively absorb light energy and disperse CSS layers to promote rapid photothermal conversion, which shows the temperature change more than ≈40 °C and an excellent photothermal conversion efficiency of 68.9% at 405 nm, corresponding to the theoretical calculation results. Moreover, the CSS@BP/BiTe photothermoelectric conversion array prepared by pulsed laser deposition coated BiTe thermoelectric layer and laminated porous insulating polyimide film can generate rapid thermal current changes through irradiated/non-irradiated thermal gradients. Hence, a portable attitude recognition box (ARB) is assembled with a based CSS@BP/BiTe array with a self-balancing laser and a current measurement chip that enables accurate attitude recognition through the bidirectional current generated by changes of irradiated area. Excitably, the ARB demonstrates over 86.47% accuracy without complex algorithms, showing excellent stability and robustness. Thus, this work offers an innovative solution for advancing photothermal materials and low-cost high-precision flight attitude sensing technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202414438DOI Listing

Publication Analysis

Top Keywords

attitude recognition
16
photothermoelectric conversion
8
css@bp/bite array
8
flight attitude
8
photothermal conversion
8
attitude
5
efficient photothermoelectric
4
conversion
4
conversion css@bp/bite
4
array innovative
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!