TNF receptor-associated factor 3 interacting protein 3 (TRAF3IP3/T3JAM) exhibits dual roles in cancer progression. While upregulated in most malignancies and critical for immune regulation. However, the specific effects and molecular mechanisms of TRAF3IP3 on the progression of lung adenocarcinoma (LUAD) remains poorly understood. This study reveals TRAF3IP3 is upregulated in several tumor tissues but exclusively decreased in LUAD and Lung squamous cell carcinoma (LUSC) tissues, consequential in a favorable overall survival (OS) in LUAD rather than LUSC. Herein, it is reported that TRAF3IP3 can suppress cell proliferation and promote the apoptosis rate of LUAD cells by inducing excessive ER stress-related apoptosis. Importantly, TRAF3IP3 triggers ER stress via the PERK/ATF4/CHOP pathway, accompanied by stimulated ER stress-induced cytoprotective autophagy in LUAD cells. Through IP-MS analysis, STRN3 is identified as a direct downstream interactor with TRAF3IP3 and corroborated to regulate ER stress positively. Mechanistically, TRAF3IP3 facilitates the recruitment of STRN3 to the ER lumen through its transmembrane domain and fulfills its functional role in ER stress in an STRN3-dependent manner in LUAD cells. Given its dual role in orchestrating ER stress-associated apoptosis and autophagy in LUAD cell fate determination, the importance of TRAF3IP3 is highlighted as novel therapeutic target for LUAD treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/advs.202411020 | DOI Listing |
J Immunol
March 2025
Department of Environmental Health, Boston University School of Public Health, Boston, MA, United States.
While immunotherapy has shown some efficacy in lung adenocarcinoma (LUAD) patients, many respond only partially or not at all. One limitation in improving outcomes is the lack of a complete understanding of immune checkpoint regulation. Here, we investigated a possible link between an environmental chemical receptor implicated in lung cancer and immune regulation, the AhR, a known but counterintuitive mediator of immunosuppression (interferon (IFN)-γ), and regulation of two immune checkpoints (PD-L1 and IDO).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2025
Laboratorio 1. Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas-Universidad de Salamanca and Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Salamanca 37007, Spain.
We evaluated the in vivo therapeutic efficacy and tolerability of BI-3406-mediated pharmacological inhibition of SOS1 in comparison to genetic ablation of this universal Ras-GEF in various KRAS-dependent experimental tumor settings. Contrary to the rapid lethality caused by SOS1 genetic ablation in SOS2 mice, SOS1 pharmacological inhibition by its specific inhibitor BI-3406 did not significantly affect animal weight/viability nor cause noteworthy systemic toxicity. Allograft assays using different KRAS cell lines showed that treatment with BI-3406 impaired RAS activation and RAS downstream signaling and decreased tumor burden and disease progression as a result of both tumor-intrinsic and -extrinsic therapeutic effects of the drug.
View Article and Find Full Text PDFFront Pharmacol
February 2025
Department of General Internal Medicine, Tianjin Hospital, Tianjin, China.
Background: is expressed in various tumors and leukemia cell lines. This study aims to explore the effect of in lung adenocarcinoma (LUAD).
Methods: The data on LUAD patients were collected from the Cancer Genome Atlas and Gene Expression Omnibus database.
Cell Div
March 2025
Department of Laboratory, Wujin Hospital Affiliated With Jiangsu University, No. 2 of Yongning North Road, Changzhou, 213002, Jiangsu, People's Republic of China.
Objective: Regulatory Factor X (RFX) transcription factors have been implicated in different cancers. Ras association domain family (RASSF) has been shown clinical significance in lung cancer. This paper was to investigate the interaction of RFX2 and RASSF1 in lung adenocarcinoma (LUAD).
View Article and Find Full Text PDFJ Exp Clin Cancer Res
March 2025
Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150040, China.
Background: Brain metastasis significantly contributes to the failure of targeted therapy in patients with epidermal growth factor receptor (EGFR)-mutated lung adenocarcinoma (LUAD). Reduced expression of RNA-binding motif protein 10 (RBM10) is associated with brain metastasis in these patients. However, the mechanism by which RBM10 affects brain metastasis in EGFR-mutated LUAD remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!