Methane Beryllation Catalyzed by a Base Metal Complex.

J Am Chem Soc

Chemistry Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K.

Published: March 2025

The homogeneous catalytic functionalization of methane is extremely challenging due to the relative nonpolarity and high C-H bond strength of this hydrocarbon. Here, using catalytic quantities (10 mol %) of CpMn(CO) or Cp*Re(CO), the conversion of methane and benzene C-H bonds to C-Be and H-Be bonds by CpBeBeCp has been achieved under photochemical conditions. Possible intermediates in the beryllation reactions─-bis(beryllyl)-manganese and -rhenium complexes─were also isolated. Quantum chemical calculations indicate that the inherent properties of the beryllyl ligands─which are powerfully σ-donating and feature highly Lewis acidic beryllium centers─are decisive in enabling methane functionalization by these systems.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c02179DOI Listing

Publication Analysis

Top Keywords

methane
4
methane beryllation
4
beryllation catalyzed
4
catalyzed base
4
base metal
4
metal complex
4
complex homogeneous
4
homogeneous catalytic
4
catalytic functionalization
4
functionalization methane
4

Similar Publications

Seasonally recurring patterns of dominant Crenothrix spp. in a European alluvial drinking water well: Significance and potential indicator role.

Water Res

February 2025

Division Water Quality and Health, Department of Pharmacology, Physiology, and Microbiology, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, A-3500 Krems an der Donau, Austria; Institute of Chemical, Environmental and Bioscience Engineering, Microbiology and Molecular Diagnostics E166/5/3, TU Wien, Gumpendorferstraße 1a, A-1060 Vienna, Austria. Electronic address:

Iron and manganese (Fe/Mn) often lead to aesthetic quality issues in water supply. Strong and problematic black-brown particle formation was persistently observed in an alluvial drinking water well, even though oxygen enrichment probes, intended for in situ i.e.

View Article and Find Full Text PDF

The accurate estimation of methane generation in landfills is crucial for effective greenhouse gas management and energy recovery, requiring site-specific assessments due to the inherent variability in waste composition and properties before and after disposal. This study investigates the uncertainties associated with methane generation predictions by employing a combination of stoichiometric methods, Biochemical Methane Potential (BMP) assays, and Bayesian inference. Fresh and aged (1-year-old and 5-year-old) samples collected in the tropical Saravan dump site in Gilan, Iran, were used to evaluate the waste's methane generation potential and degradation rate in the field.

View Article and Find Full Text PDF

High-Capacity Volumetric Methane Storage in Hyper-Cross-Linked Porous Polymers via Flexibility Engineering of Building Units.

Adv Mater

March 2025

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

Adsorbed natural gas (ANG) storage is emerging as a promising alternative to traditional compressed and liquefied storage methods. However, its onboard application is restricted by low volumetric methane storage capacity. Flexible porous adsorbents offer a potential solution, as their dense structures and unique gate-opening effects are well-suited to enhance volumetric capacity under high pressures.

View Article and Find Full Text PDF

The conversion of carbon dioxide into fuels and fine chemicals is a highly desirable route for mitigating flue gas emissions. However, achieving selectivity toward olefins remains challenging and typically requires high temperatures and pressures. Herein, we address this challenge using 12 nm copper nanoparticles supported on FeOx micro-rods, which promote the selective hydrogenation of CO to light olefins (C-C) under atmospheric pressure.

View Article and Find Full Text PDF

There is substantial interest in restoring tidal wetlands because of their high rates of long-term soil carbon sequestration and other valued ecosystem services. However, these wetlands are sometimes net sources of greenhouse gases (GHG) that may offset their climate cooling potential. GHG fluxes vary widely within and across tidal wetlands, so it is essential to better understand how key environmental drivers, and importantly, land management, affect GHG dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!