Many studies have linked genetic variation to behavior, but few connect to the intervening neural circuits that underlie the arc from sensation to action. Here, we used a combination of genome-wide association (GWA), developmental gene expression, and photoreceptor electrophysiology to investigate the architecture of mate choice behavior in Heliconius cydno butterflies, a clade where males identify preferred mates based on wing color patterns. We first found that the GWA variants most strongly associated with male mate choice were tightly linked to the gene controlling wing color in the K locus, consistent with previous mapping efforts. RNA-seq across developmental time points then showed that seven genes near the top GWA peaks were differentially expressed in the eyes, optic lobes, or central brain of white and yellow H. cydno males, many of which have known functions in the development and maintenance of synaptic connections. In the visual system of these butterflies, we identified a striking physiological difference between yellow and white males that could provide an evolutionarily labile circuit motif in the eye to rapidly switch behavioral preference. Using single-cell electrophysiology recordings, we found that some ultraviolet (UV)-sensitive photoreceptors receive inhibition from long-wavelength photoreceptors in the male eye. Surprisingly, the proportion of inhibited UV photoreceptors was strongly correlated with male wing color, suggesting a difference in the early stages of visual processing that could plausibly influence courtship decisions. We discuss potential links between candidate genes and this physiological signature, and suggest future avenues for experimental work. Taken together, our results support the idea that alterations to the evolutionarily labile peripheral nervous system, driven by genetic and gene expression differences, can significantly and rapidly alter essential behaviors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1371/journal.pbio.3002989 | DOI Listing |
PLoS Biol
March 2025
Department of Ecology & Evolution, The University of Chicago, Chicago Illinois, United States of America.
Many studies have linked genetic variation to behavior, but few connect to the intervening neural circuits that underlie the arc from sensation to action. Here, we used a combination of genome-wide association (GWA), developmental gene expression, and photoreceptor electrophysiology to investigate the architecture of mate choice behavior in Heliconius cydno butterflies, a clade where males identify preferred mates based on wing color patterns. We first found that the GWA variants most strongly associated with male mate choice were tightly linked to the gene controlling wing color in the K locus, consistent with previous mapping efforts.
View Article and Find Full Text PDFEvolution
March 2025
Institut de Systématique, Evolution et Biodiversité (UMR 7205 CNRS/MNHN/SU/EPHE/UA), Muséum National d'Histoire Naturelle - CP50, 45 rue Buffon, 75005 PARIS, France.
Mol Ecol
March 2025
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India.
Theory predicts that in allopatric populations, genomic divergence and reproductive barriers may be driven by random genetic drift and thereby evolve slowly in large populations. However, local adaptation and divergence under selection may also play important roles, which remain poorly characterised. Here, we address three key questions in young allopatric species: (a) How widespread are genomic signatures of adaptive divergence?, (b) What is the functional space along which young sister species show divergence at the genomic level? and (c) How quickly might prezygotic and postzygotic reproductive barriers evolve? Analysis of 82 re-sequenced genomes of the Oriental Papilio polytes species group revealed surprisingly widespread hotspots of intense selection and selective sweeps at hundreds of genes, spanning all chromosomes, rather than divergence only in a few genomic islands.
View Article and Find Full Text PDFPLoS Biol
February 2025
Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom.
Supergenes can evolve when recombination-suppressing mechanisms like inversions promote co-inheritance of alleles at two or more polymorphic loci that affect a complex trait. Theory shows that such genetic architectures can be favoured under balancing selection or local adaptation in the face of gene flow, but they can also bring costs associated with reduced opportunities for recombination. These costs may in turn be offset by rare 'gene flux' between inverted and ancestral haplotypes, with a range of possible outcomes.
View Article and Find Full Text PDFInsects
January 2025
The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
Insects can repair wounds and regenerate body parts in response to physical damage. Wound healing in butterfly pupal wing tissues is developmentally interesting because ectopic color patterns develop during healing, suggesting that normal and damage-induced color patterns may use similar mechanisms. Here we physiologically investigated wound healing and ectopic color pattern formation in butterfly pupal wing tissues using the blue pansy butterfly .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!