Donor Lymphocyte Infusion (DLI) is a crucial therapeutic strategy for relapsed myeloid malignancies post-allogeneic hematopoietic cell transplantation (allo-HCT), leveraging the graft-versus-leukemia (GvL) effect to restore immune control. While highly effective in chronic myeloid leukemia (CML), its efficacy in acute myeloid leukemia (AML) remains limited, with underlying mechanisms not fully understood. Recent research by Maurer and colleagues utilized cutting-edge technologies to dissect immune-leukemia interactions within the bone marrow niche, identifying a cytotoxic CD8+ T cell population as a key mediator of the anti-leukemic response. The study highlights a dynamic expansion of T and NK cells in responders, whereas non-responders display an immune suppressive bone marrow niche. TCR tracking revealed that the primary effectors of GvL in AML originate from the DLI infusion, yet their activation depends on a permissive bone marrow microenvironment. These insights emphasize that leukemia progression and immune response are shaped not only by malignant cells but also by broader niche dynamics. Further investigation is needed to define the different mechanisms that drives response or resistance to cellular therapies, but also to dissect the antigenic specificity of GvL-mediating T cells and define biomarkers predicting response to DLI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-25-1018 | DOI Listing |
J Immunol
January 2025
Program in Cell Biology, The Hospital for Sick Children, Toronto, ON, Canada.
Macrophages are important mediators of immune responses with critical roles in the recognition and clearance of pathogens, as well as in the resolution of inflammation and wound healing. The neuronal guidance cue SLIT2 has been widely studied for its effects on immune cell functions, most notably directional cell migration. Recently, SLIT2 has been shown to directly enhance bacterial killing by macrophages, but the effects of SLIT2 on inflammatory activation of macrophages are less known.
View Article and Find Full Text PDFJ Immunol
February 2025
Division of Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States.
The erythroblastic island (EBI) functions as a niche in which erythroblastic island macrophages (EBIMφs) are positioned within rings of erythroblasts, providing support and signals that orchestrate efficient erythropoiesis. We postulated burn injury impacts the EBI niche, given the nearly universal presence of anemia and inflammation in burn patients, and a divergent myeloid transcriptional signature that we observed in murine bone marrow following burn injury, in which granulocyte colony-stimulating factor (G-CSF) secretion broadly attenuated the expression of EBIMφ marker genes. Notably, we identified the heme-induced transcription factor Spi-C as a robust marker of EBIMφs in Spicigfp/igfp mice.
View Article and Find Full Text PDFJ Immunol
March 2025
Department of Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Mast cells (MCs) play a central role in allergic immune responses. MC activation is regulated by several inhibitory immunoreceptors. The CD300 family members CD300a and CD300lf recognize phospholipid ligands and inhibit the FcεRI-mediated activating signal in MCs.
View Article and Find Full Text PDFJ Immunol
March 2025
INSERM U1015, Gustave Roussy Cancer Campus, 114 rue Edouard Vaillant, Villejuif, 94805, France.
Microglia, the major population of brain resident macrophages, differentiate from yolk sac progenitors in the embryo and play multiple nonimmune roles in brain organization throughout development and life. Various microglia subtypes have been described by transcriptomic and proteomic signatures, involved metabolic pathways, morphology, intracellular complexity, time of residency, and ontogeny, both in development and in disease settings. Such macrophage heterogeneity increases with aging or neurodegeneration.
View Article and Find Full Text PDFJ Immunol
March 2025
Antibody and Vaccine Group, Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom.
Macrophage differentiation, phenotype, and function have been assessed extensively in vitro by predominantly deriving human macrophages from peripheral blood. It is accepted that there are differences between macrophages isolated from different human tissues; however, the importance of anatomical source for in vitro differentiation and characterization is less clear. Here, phenotype and function were evaluated between human macrophages derived from bone marrow or peripheral blood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!