Oxygenic photosynthesis is responsible for nearly all biomass production on Earth, and may have been a prerequisite for establishing a complex biosphere rich in multicellular life. Life on Earth has evolved to perform photosynthesis in a wide range of light environments, but with a common basic architecture of a light-harvesting antenna system coupled to a photochemical reaction centre. Using a generalized thermodynamic model of light-harvesting, coupled with an evolutionary algorithm, we predict the type of light-harvesting structures that might evolve in light of different intensities and spectral profiles. We reproduce qualitatively the pigment composition, linear absorption profile and structural topology of the antenna systems of multiple types of oxygenic photoautotrophs, suggesting that the same physical principles underlie the development of distinct antenna structures in various light environments. Finally we apply our model to representative light environments that would exist on Earth-like exoplanets, predicting that both oxygenic and anoxygenic photosynthesis could evolve around low mass stars, though the latter would seem to work better around the coolest M-dwarfs. We see this as an interesting first step toward a general evolutionary model of basic biological processes and proof that it is meaningful to hypothesize on the nature of biology beyond Earth.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1371/journal.pcbi.1012845 | DOI Listing |
Neural Netw
March 2025
School of Computer Technology and Engineering, Changchun Institute of Technology, Changchun, China; College of Artificial Intelligence Technology, Changchun Institute of Technology, Changchun, China. Electronic address:
Distributed machine learning in mobile adhoc networks faces significant challenges due to the limited computational resources of devices, non-IID data distribution, and dynamic network topology. Existing approaches often rely on centralized coordination and stable network conditions, which may not be feasible in practice. To address these issues, we propose an adaptive distributed multi-task learning framework called ADAMT for efficient image recognition in resource-constrained mobile ad hoc networks.
View Article and Find Full Text PDFTissue Cell
March 2025
Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Electronic address:
Background: Cell therapy utilizing mesenchymal stem cells, which have the ability to differentiate into different lineages, has garnered significant attention in recent years. Melissa officinalis is rich in biologically active compounds and exhibits antioxidant activity, antimicrobial properties, and sedative effects. Nanoemulsions can facilitate the effective transfer of substances and also protect drugs and biological materials from environmental factors.
View Article and Find Full Text PDFPLoS One
March 2025
Department of Physics, Portland State University, Portland, Oregon, United States of America.
The ability of microbial active motion, morphology, and optical properties to serve as biosignatures was investigated by in situ video microscopy in a wide range of extreme field sites where such imaging had not been performed previously. These sites allowed for sampling seawater, sea ice brines, cryopeg brines, hypersaline pools and seeps, hyperalkaline springs, and glaciovolcanic cave ice. In all samples except the cryopeg brine, active motion was observed without any sample treatment.
View Article and Find Full Text PDFEnviron Sci Technol
March 2025
School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
Catalyst deactivation poses a significant challenge in environmental remediation, especially for the photocatalytic oxidation of chlorinated volatile organic compounds (Cl-VOCs). In this study, a functional flower-like TiO@Mn/rGO (FTMG) catalyst coupled with a vacuum ultraviolet (VUV) lamp was used as a novel photocatalytic oxidation (VUV-PCO) system for chlorobenzene (CB) oxidation. In this system, more than 80% of CB was efficiently oxidized at a high w8 hly space velocity of 600,000 g h, which was a 6.
View Article and Find Full Text PDFBrief Bioinform
March 2025
Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, United States.
This work aims to (1) identify microbial and metabolic alterations and (2) reveal a shift in phenylalanine production-consumption equilibrium in individuals with HIV. We conducted extensive searches in multiple databases [MEDLINE, Web of Science (including Cell Press, Oxford, HighWire, Science Direct, IOS Press, Springer Nature, PNAS, and Wiley), Google Scholar, and Embase] and selected two case-control 16S data sets (GenBank IDs: SRP039076 and EBI ID: ERP003611) for analysis. We assessed alpha and beta diversity, performed univariate tests on genus-level relative abundances, and identified significant microbiome features using random forest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!