Infectious bronchitis virus (IBV) is an important avian pathogen with a positive-sense single-stranded RNA genome. IBV is the causative agent of infectious bronchitis (IB), a primarily respiratory disease affecting chickens, with the ability to disseminate to other organ systems, such as the gastrointestinal, renal, lymphoid, and reproductive systems. Tracheal epithelial cells are the primary target of IBV, and these cells play a vital role in the effective induction of the antiviral response and eventual clearance of IBV. The host immune system is regulated by a number of different molecular players, including micro-ribonucleic acids (microRNAs), which are small, conserved, non-coding RNA molecules that regulate gene expression of complementary messenger RNA (mRNA) sequences, resulting in gene silencing through translational repression or target degradation. The goal of this study was to characterize and compare the microRNA expression profiles in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo upon IBV Delmarva/1639 (DMV/1639) or IBV Massachusetts 41 (Mass41) infections. We hypothesized that IBV infection influences the expression of the host microRNA expression profiles. cTECs and young specific pathogen-free (SPF) chickens were infected with IBV DMV/1639 or IBV Mass41 and the microRNA expression at 3 and 18 hours post-infection (hpi) in the cTECs and at 4 and 11 days post-infection (dpi) in the trachea were determined using small RNA-sequencing (RNA-seq). We found that the profile of differentially expressed (DE) microRNAs is largely dependent on the IBV strain and time point of sample collection. Furthermore, we predicted the interaction between host microRNA and IBV viral RNA using microRNA-RNA interaction prediction platforms. We identified several candidate microRNAs suitable for future functional studies, such as gga-miR-155, gga-miR-1388a, gga-miR-7/7b and gga-miR-21-5p. Characterizing the interaction between IBV and the host cells at the level of microRNA regulation provides further insight into the regulatory mechanisms involved in viral infection and host defense in chickens following IBV infection.

Download full-text PDF

Source
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0319153PLOS

Publication Analysis

Top Keywords

ibv
13
infectious bronchitis
12
microrna expression
12
bronchitis virus
8
tracheal epithelial
8
epithelial cells
8
ibv host
8
expression profiles
8
dmv/1639 ibv
8
ibv infection
8

Similar Publications

Infectious bronchitis virus (IBV) is an important avian pathogen with a positive-sense single-stranded RNA genome. IBV is the causative agent of infectious bronchitis (IB), a primarily respiratory disease affecting chickens, with the ability to disseminate to other organ systems, such as the gastrointestinal, renal, lymphoid, and reproductive systems. Tracheal epithelial cells are the primary target of IBV, and these cells play a vital role in the effective induction of the antiviral response and eventual clearance of IBV.

View Article and Find Full Text PDF

Design and development of a novel multi-epitope DNA vaccine candidate against infectious bronchitis virus: an immunoinformatic approach.

Arch Microbiol

March 2025

Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, No. 22, Jinjing Road, Xiqing District, Tianjin, 300392, People's Republic of China.

Avian infectious bronchitis (IB) is one of the major respiratory diseases in poultry. At present, attenuated vaccines are the main commercial vaccines, but they have many defects. We aimed to construct a novel multi-epitope DNA vaccine based on avian infectious bronchitis virus (IBV) S1 and N proteins for the prevention of IBV infection.

View Article and Find Full Text PDF

Plant Peptide Ligands as Temporal and Spatial Regulators.

Annu Rev Plant Biol

March 2025

Section for Genetics and Evolutionary Biology, Department of Biosciences, University of Oslo, Oslo, Norway;

Throughout the life cycle of a plant, numerous responses need to be carefully regulated to ensure proper development and appropriate responses to external stimuli, and plant hormones play a crucial role in this regulation. Since the early 1990s, there has been expansive research elucidating the central role that peptide ligands play as intrinsic short- and long-distance communicators during development and as regulators of phenotypic plasticity. In this review, we focus on recently discovered mechanisms that ensure correct spatial and temporal cellular responses triggered by peptide ligands and provide examples of how peptide processing proteins and apoplastic conditions can regulate peptide activity in a timely manner.

View Article and Find Full Text PDF

Ergonomic risks are a global problem in construction, with health effects that have an impact on the economy. Risk assessment allows companies to identify the risks and the exposure levels to which the workers are subjected and allows to define management plans to address them. However, studies to assess risk levels through new techniques are very scarce in construction.

View Article and Find Full Text PDF

Enveloped viruses enter cells by binding to receptors present on host cell membranes, which trigger internalization and membrane fusion. For many viruses, this either directly or indirectly involves interaction with membrane-anchored carbohydrates, such as heparan sulfate, providing a potential target for a broad-spectrum antiviral approach. Based on this hypothesis, we screened a library of functionalized chitosan sulfates that mimic heparan sulfate in cellular membranes for inhibition of SARS-CoV-2 and respiratory syncytial virus (RSV) entry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!