All-electrical layer-spintronics in altermagnetic bilayers.

Mater Horiz

Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore, 487372, Singapore.

Published: March 2025

Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other layer hosts a current with opposite spin polarization. An out-of-plane electric field breaks the layer degeneracy, leading to a gate-tunable spin-polarized current whose polarization can be fully reversed upon flipping the polarity of the electric field. Using first-principles calculations, we show that a CrS bilayer with C-type antiferromagnetic exchange interaction exhibits a hidden layer-spin locking mechanism that enables the spin polarization of the transport current to be electrically manipulated the layer degree of freedom. We demonstrate that sign-reversible spin polarization as high as 87% can be achieved at room temperature. This work presents the pioneering concept of layer-spintronics which synergizes altermagnetism and bilayer stacking to achieve efficient electrical control of spin.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01509fDOI Listing

Publication Analysis

Top Keywords

spin-polarized current
16
spin polarization
12
manipulation spin-polarized
8
layer-spin locking
8
layer hosts
8
electric field
8
current
6
all-electrical layer-spintronics
4
layer-spintronics altermagnetic
4
altermagnetic bilayers
4

Similar Publications

All-electrical layer-spintronics in altermagnetic bilayers.

Mater Horiz

March 2025

Science, Mathematics and Technology (SMT) Cluster, Singapore University of Technology and Design, Singapore, 487372, Singapore.

Electrical manipulation of spin-polarized current is highly desirable yet tremendously challenging in developing ultracompact spintronic device technology. Here we propose a scheme to realize the all-electrical manipulation of spin-polarized current in an altermagnetic bilayer. Such a bilayer system can host layer-spin locking, in which one layer hosts a spin-polarized current while the other layer hosts a current with opposite spin polarization.

View Article and Find Full Text PDF

Computational study of skyrmion stability and transport on W/CoFeB.

Sci Rep

March 2025

Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, 819-0382, Japan.

Skyrmions are topologically protected magnetic structures originating from Dzyaloshinbskii-Moriya Interaction (DMI) which can be driven by a spin-polarized current making it a candidate for many different novel spintronic devices. However, the transport velocity is proportional to the size of the skyrmion rendering the effort of miniaturizing spintronics devices useless indicating that it is not possible to realise high-speed transport, small size and low operating current at the same time. One approach to solving the trilemma is to increase the spin Hall angle [Formula: see text], the conversion ratio between charge current and spin current, in the heavy metal layer.

View Article and Find Full Text PDF

The oxygen reduction reaction (ORR) in acidic media suffers from sluggish kinetics, primarily due to the spin-dependent electron transfer involved. The direct generation of spin-polarized electrons at catalytic surfaces remains elusive, and the underlying mechanisms are still controversial due to the lack of intrinsically chiral catalysts. To address this challenge, we investigate topological homochiral PdGa (TH PdGa) crystals with intrinsically chiral catalytic surfaces for ORR.

View Article and Find Full Text PDF

The movement of charges through a chiral medium results in a spin-polarized charge current. This phenomenon, known as the chirality-induced spin selectivity (CISS) effect, enables control over spin populations without the need for magnetic components and operates at room temperature. CISS has been discovered in a range of chiral media and most prominently studied in chiral organic molecular species.

View Article and Find Full Text PDF

Heteroatom-doping has emerged as a transformative approach to producing high-performance catalysts, yet the current trial-and-error approach to optimize these materials remains ineffective. To enable the rational design of more efficient catalysts, models grounded in a deeper understanding of catalytic mechanisms are essential. Existing models, such as -band center theory, fall short in explaining the role of dopants, particularly when these dopants do not directly interact with reactants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!